
1

2

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Learning

algorithm

Training Set

Learning

Algorithm

Model

 Given a collection of records (training set)

–Each record contains a set of attributes (x), with one
additional attribute which is the class (y).

 Find a model to predict the class as a function of the
values of other attributes.

 Goal: previously unseen records should be assigned a
class as accurately as possible.

–A test set is used to determine the accuracy of the
model. Usually, the given data set is divided into
training and test sets, with training set used to build
the model and test set used to validate it.

 Classifying credit card transactions
as legitimate or fraudulent

 Classifying secondary structures of protein
as alpha-helix, beta-sheet, or random
coil

 Categorizing news stories as finance,
weather, entertainment, sports, etc

 Predicting tumor cells as benign
or malignant

 There are many techniques/algorithms for carrying out
classification

 In this chapter we will study only decision trees

 In Chapter 5 we will study other techniques, including
some very modern and effective techniques

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Start from the root of tree.

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Assign Cheat to “No”

 The function rpart() in the library “rpart” generates

decision trees in R.

 Be careful: This function also does regression trees

which are for a numeric response. Make sure the

function rpart() knows your class labels are a factor and

not a numeric response.

(“if y is a factor then method="class" is assumed”)

1) root 81 17 absent (0.79012346 0.20987654)

2) Start>=8.5 62 6 absent (0.90322581 0.09677419)

4) Age=old,young 48 2 absent (0.95833333 0.04166667)

8) Start>=13.5 25 0 absent (1.00000000 0.00000000) *

9) Start< 13.5 23 2 absent (0.91304348 0.08695652) *

5) Age=middle 14 4 absent (0.71428571 0.28571429)

10) Start>=12.5 10 1 absent (0.90000000 0.10000000) *

11) Start< 12.5 4 1 present (0.25000000 0.75000000) *

3) Start< 8.5 19 8 present (0.42105263 0.57894737)

6) Start< 4 10 4 absent (0.60000000 0.40000000)

12) Number< 2.5 1 0 absent (1.00000000 0.00000000) *

13) Number>=2.5 9 4 absent (0.55555556 0.44444444) *

7) Start>=4 9 2 present (0.22222222 0.77777778)

14) Number< 3.5 2 0 absent (1.00000000 0.00000000) *

15) Number>=3.5 7 0 present (0.00000000 1.00000000) *

Solution:

install.packages("rpart")
library(rpart)
train<-read.csv("sonar_train.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
fit<-rpart(y~.,x)
1-sum(y==predict(fit,x,type="class"))/length(y)

Solution (continued):

test<-read.csv("sonar_test.csv",header=FALSE)
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
1-sum(y_test==predict(fit,x_test,type="class"))/
length(y_test)

Solution:

fit<-
rpart(y~.,x,control=rpart.control(maxdepth=1))

1-sum(y==predict(fit,x,type="class"))/length(y)
1-sum(y_test==predict(fit,x_test,type="class"))/
length(y_test)

Solution:

fit<-rpart(y~.,x,
control=rpart.control(minsplit=0,

minbucket=0,cp=-1,maxcompete=0,
maxsurrogate=0, usesurrogate=0,

xval=0,maxdepth=6))
1-sum(y==predict(fit,x,type="class"))/length(y)
1-sum(y_test==predict(fit,x_test,type="class"))/
length(y_test)

 Many algorithms use a version of a “top-down” or

“divide-and-conquer” approach known as Hunt’s

Algorithm (Page 152):

Let Dt be the set of training records that reach a node t

–If Dt contains records that belong the same class yt,
then t is a leaf node labeled as yt

–If Dt contains records that belong to more than one
class, use an attribute test to split the data into
smaller subsets. Recursively apply the procedure to
each subset.

Don’t

Cheat

Refund

Don’t

Cheat

Don’t

Cheat

Yes No

Refund

Don’t

Cheat

Yes No

Marital

Status

Don’t

Cheat

Cheat

Single,

Divorced
Married

Taxable

Income

Don’t

Cheat

< 80K >= 80K

Refund

Don’t

Cheat

Yes No

Marital

Status

Don’t

Cheat
Cheat

Single,

Divorced
Married

 Usually it is done in a “greedy” fashion.

 “Greedy” means that the optimal split is chosen at

each stage according to some criterion.

 This may not be optimal at the end even for the same

criterion.

 However, the greedy approach is computational

efficient so it is popular.

 Using the greedy approach we still have to decide 3

things:

#1) What attribute test conditions to consider

#2) What criterion to use to select the “best” split

#3) When to stop splitting

 For #1 we will consider only binary splits for both

numeric and categorical predictors as discussed on the

next slide

 For #2 we will consider misclassification error, Gini

index and entropy

 #3 is a subtle business involving model selection. It is

tricky because we don’t want to overfit or underfit.

We will consider only binary splits for both numeric

and categorical predictors as discussed, but your book

talks about multiway splits also

 Nominal

 Ordinal – like nominal but don’t break order with split

 Numeric – often use midpoints between numbers

CarType
{Sports,

Luxury} {Family}

Size
{Medium,

Large} {Small}

Taxable

Income > 80K?

Yes No

ORSize
{Small,

Medium} {Large}

We will consider misclassification error, Gini index

and entropy

Misclassification Error:

Gini Index:

Entropy:

)|(max1)(tiPtError
i

j

tjptjptEntropy)|(log)|()(
2

j

tjptGINI 2)]|([1)(

 Misclassification error is usually our final metric which

we want to minimize on the test set, so there is a logical

argument for using it as the split criterion

 It is simply the fraction of total cases misclassified

 1 - Misclassification error = “Accuracy” (page 149)

)|(max1)(tiPtError
i

 This is commonly used in many algorithms like CART

and the rpart() function in R

 After the Gini index is computed in each node, the

overall value of the Gini index is computed as the

weighted average of the Gini index in each node

j

tjptGINI 2)]|([1)(

k

i

i
split iGINI

n

n
GINI

1

)(

C1 0

C2 6

C1 2

C2 4

C1 1

C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0

j

tjptGINI 2)]|([1)(

P(C1) = 1/6 P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6 P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

 The Gini index decreases from .42 to .343 while the

misclassification error stays at 30%. This illustrates why we

often want to use a surrogate loss function like the Gini

index even if we really only care about misclassification.

A?

Yes No

Node N1 Node N2

 Parent

C1 7

C2 3

Gini = 0.42

Gini(N1)

= 1 – (3/3)2 – (0/3)2

= 0

Gini(Children)

= 3/10 * 0

+ 7/10 * 0.49

= 0.343

Gini(N2)

= 1 – (4/7)2 – (3/7)2

= 0.490

 Measures purity similar to Gini

 Used in C4.5

 After the entropy is computed in each node, the

overall value of the entropy is computed as the weighted

average of the entropy in each node as with the Gini

index

 The decrease in Entropy is called “information gain”

(page 160)

j

tjptjptEntropy)|(log)|()(
2

k

i

i

split
iEntropy

n

n
pEntropyGAIN

1

)()(

C1 0

C2 6

C1 2

C2 4

C1 1

C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0

P(C1) = 1/6 P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (5/6) = 0.65

P(C1) = 2/6 P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92

 This is a subtle business involving model selection. It

is tricky because we don’t want to overfit or underfit.

 One idea would be to monitor misclassification error

(or the Gini index or entropy) on the test data set and

stop when this begins to increase.

 “Pruning” is a more popular technique.

 “Pruning” is a popular technique for choosing the

right tree size

 Your book calls it post-pruning (page 185) to

differentiate it from prepruning

With (post-) pruning, a large tree is first grown top-

down by one criterion and then trimmed back in a

bottom up approach according to a second criterion

 Rpart() uses (post-) pruning since it basically follows

the CART algorithm

(Breiman, Friedman, Olshen, and Stone, 1984,

Classification and Regression Trees)

