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Abstract. A Bayesian network is a graphical model that encodes probabilistic relationships among variables «
interest. When used in conjunction with statistical techniques, the graphical model has several advantages
data modeling. One, because the model encodes dependencies among all variables, it readily handles situa
where some data entries are missing. Two, a Bayesian network can be used to learn causal relationships,
hence can be used to gain understanding about a problem domain and to predict the consequences of interver
Three, because the model has both a causal and probabilistic semantics, it is an ideal representation for combi
prior knowledge (which often comes in causal form) and data. Four, Bayesian statistical methods in conjuncti
with Bayesian networks offer an efficient and principled approach for avoiding the overfitting of data. In this
paper, we discuss methods for constructing Bayesian networks from prior knowledge and summarize Bayes
statistical methods for using data to improve these models. With regard to the latter task, we describe meth
for learning both the parameters and structure of a Bayesian network, including techniques for learning wi
incomplete data. In addition, we relate Bayesian-network methods for learning to techniques for supervised &
unsupervised learning. We illustrate the graphical-modeling approach using a real-world case study.

Keywords: Bayesian networks, Bayesian statistics, learning, missing data, classification, regression, clusterir
causal discovery

1. Introduction

A Bayesian network is a graphical model for probabilistic relationships among a set ¢
variables. Over the last decade, the Bayesian network has become a popular represente
for encoding uncertain expert knowledge in expert systems (Heckerman et al., 1995
More recently, researchers have developed methods for learning Bayesian networks fri
data. The techniques that have been developed are new and still evolving, but they he
been shown to be remarkably effective for some data-modeling problems.

In this paper, we provide a tutorial on Bayesian networks and associated Bayesian te
niques for data mining—the process of extracting knowledge from data. There are numerc
representations available for data mining, including rule bases, decision trees, and artific
neural networks; and there are many techniques for data mining such as density estimati
classification, regression, and clustering. So what do Bayesian networks and Bayes
methods have to offer? There are at least four answers.

One, Bayesian networks can readily handle incomplete data sets. For example, consi
a classification or regression problem where two of the explanatory or input variables a
strongly anti-correlated. This correlation is not a problem for standard supervised learnit
techniques, provided all inputs are measured in every case. When one of the inputs is
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observed, however, many models will produce an inaccurate prediction, because they
not encode the correlation between the input variables. Bayesian networks offer a natu
way to encode such dependencies.

Two, Bayesian networks allow one to learn about causal relationships. Learning abo
causal relationships are important for at least two reasons. The process is useful when we
trying to gain understanding about a problem domain, for example, during exploratory da
analysis. In addition, knowledge of causal relationships allows us to make predictions
the presence of interventions. For example, a marketing analyst may want to know whett
or not itis worthwhile to increase exposure of a particular advertisement in order to increa
the sales of a product. To answer this question, the analyst can determine whether or
the advertisement is a cause for increased sales, and to what degree. The use of Baye
networks helps to answer such questions even when no experiment about the effects
increased exposure is available.

Three, Bayesian networks in conjunction with Bayesian statistical techniques facilital
the combination of domain knowledge and data. Anyone who has performed a real-wor
modeling task knows the importance of prior or domain knowledge, especially when da
is scarce or expensive. The fact that some commercial systems (i.e., expert systems) cal
built from prior knowledge alone is a testament to the power of prior knowledge. Bayesia
networks have a causal semantics that makes the encoding of causal prior knowledge |
ticularly straightforward. In addition, Bayesian networks encode the strength of caus
relationships with probabilities. Consequently, prior knowledge and data can be combing
with well-studied techniques from Bayesian statistics.

Four, Bayesian methods in conjunction with Bayesian networks and other types of mode
offers an efficient and principled approach for avoiding the over fitting of data.

This tutorial is organized as follows. In Section 2, we discuss the Bayesian interpretatic
of probability and review methods from Bayesian statistics for combining prior knowledge
with data. In Section 3, we describe Bayesian networks and discuss how they can be c
structed from prior knowledge alone. In Section 4, we discuss algorithms for probabilisti
inference in a Bayesian network. In Sections 5 and 6, we show how to learn the probabiliti
in a fixed Bayesian-network structure, and describe techniques for handling incomplete d:
including Monte-Carlo methods and the Gaussian approximation. In Sections 7 through 1
we show how to learn both the probabilities and structure of a Bayesian network. Topic
discussed include methods for assessing priors for Bayesian-network structure and para
ters, and methods for avoiding the overfitting of data including Monte-Carlo, Laplace, BIC
and MDL approximations. In Sections 11 and 12, we describe the relationships betwe:
Bayesian-network techniques and methods for supervised and unsupervised learning.
Section 13, we show how Bayesian networks facilitate the learning of causal relationshif
In Section 14, we illustrate techniques discussed in the tutorial using a real-world ca:
study. In Section 15, we give pointers to software and additional literature.

2. The Bayesian approach to probability and statistics

To understand Bayesian networks and associated data-mining techniques, it is importan
understand the Bayesian approach to probability and statistics. In this section, we provi
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an introduction to the Bayesian approach for those readers familiar only with the classic
view.

In a nutshell, the Bayesian probability of an evenis a person’slegree of beliefn
that event. Whereas a classical probability is a physical property of the world (e.g., tt
probability that a coin will land heads), a Bayesian probability is a property of the perso
who assigns the probability (e.g., your degree of belief that the coin will land heads). T
keep these two concepts of probability distinct, we refer to the classical probability of a
event as the true or physical probability of that event, and refer to a degree of belief in
event as a Bayesian or personal probability. Alternatively, when the meaning is clear, v
refer to a Bayesian probability simply as a probability.

One important difference between physical probability and personal probability is tha
to measure the latter, we do not need repeated trials. For example, imagine the repec
tosses of a sugar cube onto a wet surface. Every time the cube is tossed, its dimensi
will change slightly. Thus, although the classical statistician has a hard time measuring t
probability that the cube will land with a particular face up, the Bayesian simply restrict:
his or her attention to the next toss, and assigns a probability. As another example, consi
the question: What is the probability that the Chicago Bulls will win the championship ir
20017 Here, the classical statistician must remain silent, whereas the Bayesian can as:
a probability (and perhaps make a bit of money in the process).

One common criticism of the Bayesian definition of probability is that probabilities seen
arbitrary. Why should degrees of belief satisfy the rules of probability? On what scal
should probabilities be measured? In particular, it makes sense to assign a probability
one (zero) to an event that will (not) occur, but what probabilities do we assign to belief
that are not at the extremes? Not surprising, these questions have been studied intense

With regards to the first question, many researchers have suggested different sets
properties that should be satisfied by degrees of belief (e.g., Ramsey, 1931; Cox, 1946; Go
1950; Savage, 1954; DeFinetti, 1970). It turns out that each set of properties leads to 1
same rules: the rules of probability. Although each set of properties is in itself compelling
the fact that different sets all lead to the rules of probability provides a particularly stron
argument for using probability to measure beliefs.

The answer to the question of scale follows from a simple observation: people find
fairly easy to say that two events are equally likely. For example, imagine a simplified whe
of fortune having only two regions (shaded and not shaded), such as the one illustrated
figure 1. Assuming everything about the wheel as symmetric (except for shading), yc
should conclude that it is equally likely for the wheel to stop in any one position. Frorm
this judgment and the sum rule of probability (probabilities of mutually exclusive anc

—

Figure L The probability wheel: a tool for assessing probabilities.
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collectively exhaustive sum to one), it follows that your probability that the wheel will stop
in the shaded region is the percent area of the wheel that is shaded (in this case, 0.3).

Thisprobability wheehow provides a reference for measuring your probabilities of other
events. For example, what is your probability that Al Gore will run on the Democratic ticke
in 20007 First, ask yourself the question: Is it more likely that Gore will run or that the
wheel when spun will stop in the shaded region? If you think that it is more likely that
Gore will run, then imagine another wheel where the shaded region is larger. If you thin
that it is more likely that the wheel will stop in the shaded region, then imagine anothe
wheel where the shaded region is smaller. Now, repeat this process until you think th
Gore running and the wheel stopping in the shaded region are equally likely. At this poin
your probability that Gore will run is just the percent surface area of the shaded area on t
wheel.

In general, the process of measuring a degree of belief is commonly referred to as
probability assessmeniThe technique for assessment that we have just described is or
of many available techniques discussed in the Management Science, Operations Resee
and Psychology literature. One problem with probability assessment that is addressec
this literature is that of precision. Can one really say that his or her probability for ever
X is 0.601 and not 0.599? In most cases, no. Nonetheless, in most cases, probabili
are used to make decisions, and these decisions are not sensitive to small variation:s
probabilities. Well-established practices sénsitivity analysidelp one to know when
additional precision is unnecessary (e.g., Howard and Matheson, 1983). Another proble
with probability assessment is that of accuracy. For example, recent experiences or |
way a question is phrased can lead to assessments that do not reflect a person’s true be
(Tversky and Kahneman, 1974). Methods for improving accuracy can be found in th
decision-analysis literature (e.g., Spetzler et al., 1975).

Now let us turn to the issue of learning with data. To illustrate the Bayesian approacl
consider a common thumbtack—one with a round, flat head that can be found in mo
supermarkets. If we throw the thumbtack up in the air, it will come to rest either on its poin
(head$ or on its headtgils)'. Suppose we flip the thumbtadk + 1 times, making sure
that the physical properties of the thumbtack and the conditions under which it is flippe
remain stable over time. From the fildtobservations, we want to determine the probability
of heads on th&l + 1th toss.

In the classical analysis of this problem, we assert that there is some physical probabil
of heads, which is unknown. Wistimatethis physical probability from th&l observations
using criteria such as low bias and low variance. We then use this estimate as our probabi
for heads on thé\ + 1th toss. In the Bayesian approach, we also assert that there is son
physical probability of heads, but we encode our uncertainty about this physical probabili
using (Bayesian) probabilities, and use the rules of probability to compute our probabilit
of heads on thé\ + 1th tos3.

To examine the Bayesian analysis of this problem, we need some notation. We denot
variable by an upper-case letter (eX,,Y, Xi, ®), and the state or value of a corresponding
variable by that same letter in lower case (exgy, Xi, #). We denote a set of variables by
a bold-face upper-case letter (eX,,Y, X;). We use a corresponding bold-face lower-case
letter (e.g. X, Y, X;) to denote an assignment of state or value to each variable in a give



BAYESIAN NETWORKS FOR DATA MINING 83

set. We say that variable s¥tis in configurationx. We usep(X = x| &) (or p(x | &) as

a shorthand) to denote the probability théat= x of a person with state of informatian

We also usep(x | £) the denote the probability distribution fot (both mass functions
and density functions). Whethex(x | £) refers to a probability, a probability density, or
a probability distribution will be clear from context. We use this notation for probability
throughout the paper.

Returning to the thumbtack problem, we defi@eto be a variable whose value®
correspond to the possible true values of the physical probability. We sometimes ref
to 6 as aparameter We express the uncertainty abatitusing the probability density
function p(@ | £). In addition, we use&X, to denote the variable representing the outcome
of thelth flip,| =1,..., N+ 1,andD = {X; = X3, ..., Xy = Xn} to denote the set of
our observations. Thus, in Bayesian terms, the thumbtack problem reduces to computi
P(Xn+1| D, &) from p(@ | §).

To do so, we first use Bayes’ rule to obtain the probability distributiondfagiven D
and background knowleddge

p@© &) p(D|0,§)

6|D, = 1

P |D. &) e 1)
where

p<D|s>=/p<D|9,s> p(© &) do %)

Next, we expand the term(D | 6, £). Both Bayesians and classical statisticians agree on
this term: it is the likelihood function for binomial sampling. In particular, given the value
of ®, the observations il are mutually independent, and the probability of heads (tails)
on any one observation és5(1 — 6). Consequently, Eq. (1) becomes

p@ &) 6" (1—0)"
6|D,&) = 3
p@|D,#) D15 ©)

whereh andt are the number of heads and tails observed,irespectively. The probability
distributionsp(6 | £) and p(@ | D, &) are commonly referred to as tipeior andposterior

for ®, respectively. The quantitigsandt are said to beufficient statisticfor binomial
sampling, because they provide a summarization of the data that is sufficient to compt
the posterior from the prior. Finally, we average over the possible valu@s(o$ing the
expansion rule of probability) to determine the probability that Bhe- 1th toss of the
thumbtack will come up heads:

P(Xn+1 = heads| D, &) = / P(Xn1 = heads| 6. &) p(@ | D, &) do
= /9 p@ | D,&) df = Epeip.s) () 4)

whereEpp | p.¢)(6) denotes the expectation®fvith respect to the distributiop(é | D, £).
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Beta(1,1) Beta(2,2) Beta(3,2) Beta(19,39)

Figure 2 Several beta distributions.

To complete the Bayesian story for this example, we need a method to assess the p
distribution for®. A common approach, usually adopted for convenience, is to assume th:
this distribution is @etadistribution:

r
p@ &) = Betad | an, o) = ﬁeanfl(l _ 9)0{;71 5)

whereay, > 0 ando; > 0 are the parameters of the beta distributiog; op + o, andl' ()
is theGammafunction which satisfie§ (x + 1) = xI'(x) andI' (1) = 1. The quantities,
andw; are often referred to dsyperparameterto distinguish them from the parameter
The hyperparameters, anda; must be greater than zero so that the distribution can be
normalized. Examples of beta distributions are shown in figure 2.

The beta prior is convenient for several reasons. By Eq. (3), the posterior distributic
will also be a beta distribution:

(e + N)

ot 11— ) = Beta® h,a +1) (6
C(on + )T (o + 1) ( ) etad |ap+h,ar+1t) (6)

p@|D. &) =

We say that the set of beta distributions isamjugate family of distributionfor binomial
sampling. Also, the expectation éfwith respect to this distribution has a simple form:

®h

/9 Beta® | an, o) dd = — (7)
07

Hence, given a beta prior, we have a simple expression for the probability of heads in tl
N + 1th toss:

ap +h
a+ N

p(Xns1 = heads| D, &) = (8)
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Assumingp(0 | &) is a beta distribution, it can be assessed in a number of ways. Fo
example, we can assess our probability for heads in the first toss of the thumbtack (e.
using a probability wheel). Next, we can imagine having seen the outconkdtipx, and
reassess our probability for heads in the next toss. From Eg. (8), we hake£faj

oh anh+1
X, = heads| X; = head =
o + o p(X2 | X1 sé) pRp——

p(Xy = heads| &) =

Given these probabilities, we can solve égrande;. This assessment technique is known
as the method dfnagined future data

Another assessment method is based on Eq. (6). This equation says that, if we start w
a Betd0, 0) prior* and observey, heads andy tails, then our posterior (i.e., new prior)
will be a Betdap, o) distribution. Recognizing that a Béty 0) prior encodes a state of
minimum information, we can assesg anda; by determining the (possibly fractional)
number of observations of heads and tails that is equivalent to our actual knowledge ab
flipping thumbtacks. Alternatively, we can ass@gX; = headd &) andw, which can be
regarded as aequivalent sample sier our current knowledge. This technique is known
as the method agquivalent sampleOther techniques for assessing beta distributions are
discussed by Winkler (1967) and Chaloner and Duncan (1983).

Although the beta prior is convenient, it is not accurate for some problems. For exampl
suppose we think that the thumbtack may have been purchased at a magic shop. In:
case, a more appropriate prior may be a mixture of beta distributions—for example,

p(@ | ) = 0.4 Beta#, 20, 1) + 0.4 Beta®, 1, 20) + 0.2 Betd#, 2, 2)

where 0.4 is our probability that the thumbtack is heavily weighted toward heads (tails
In effect, we have introduced an additiomédidenor unobserved variable, whose states
correspond to the three possibilities: (1) thumbtack is biased toward heads, (2) thumbte
is biased toward tails, and (3) thumbtack is normal; and we have assertédtmatitioned
on each state off is a beta distribution. In general, there are simple methods (e.g., th
method of imagined future data) for determining whether or not a beta prior is an accura
reflection of one’s beliefs. In those cases where the beta prior is inaccurate, an accur
prior can often be assessed by introducing additional hidden variables, as in this examp
So far, we have only considered observations drawn from a binomial distribution. |
general, observations may be drawn from any physical probability distribution:

pP(x16,8) = f(x,0)
wheref (x, 0) is the likelihood function with parametefis For purposes of this discussion,
we assume that the number of parameters is finite. As an exakphay be a continuous
variable and have a Gaussian physical probability distribution with mesrd variance:

P(X16,8) = (2rv) 2 e W

wheref = {u, v}.
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Regardless of the functional form, we can learn about the parameters given data usi
the Bayesian approach. As we have done in the binomial case, we define variables col
sponding to the unknown parameters, assign priors to these variables, and use Bayes’
to update our beliefs about these parameters given data:

p(D|6.%) p@|é§)
0|D,¢) = 9
pP@1D.$§) o(D |2) (9)

We then average over the possible value®ab make predictions. For example,

P51 | D, &) = / POs116.8) PO D, £) do (10)

For a class of distributions known as thgponential familythese computations can be
done efficiently and in closed fofim Members of this class include the binomial, multi-
nomial, normal, Gamma, Poisson, and multivariate-normal distributions. Each memb
of this family has sufficient statistics that are of fixed dimension for any random sample
and a simple conjugate prfor Bernardo and Smith (pp. 436—442, 1994) have compiled
the important quantities and Bayesian computations for commonly used members of t
exponential family. Here, we summarize these items for multinomial sampling, which wi
use to illustrate many of the ideas in this paper.

In multinomial sampling, the observed variabfeis discrete, having possible states
x1, ..., x". The likelihood function is given by

p(X=x10,6) =6, k=1...r

where@ = {0,, ..., 6} are the parameters. (The paramekeis given by 1— Y| _,6k.)

In this case, as in the case of binomial sampling, the parameters correspond to physi
probabilities. The sufficient statistics for data $&t= {X; = X3,..., Xy = Xn} IS
{N1, ..., N;}, whereN; is the number of timeX = xX in D. The simple conjugate prior
used with multinomial sampling is the Dirichlet distribution:

F(O[) Qﬂtk—l (11)

0 — Dir(0 yees Qr) = ==+
PO1&) =Dir@lea. ... = "m0 5 | Lo

wherea = Z{zlak, andax > 0,k =1,...,r. The posterior distributiop(@ | D, &) =
Dir(@ | a1+ Ng, ..., ar + N;). Techniques for assessing the beta distribution, including the
methods of imagined future data and equivalent samples, can also be used to assess Diric
distributions. Given this conjugate prior and dataBethe probability distribution for the
next observation is given by

. + N
p(xN+1=xk|D,s>=fekDur(e|a1+Nl,...,ar+Nr>de=°‘of+Nk

(12)
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As we shall see, another important quantity in Bayesian analysis mdrginal likelihood
or evidence pD | £). In this case, we have

pP(D ()

['(a) l—[ I (o + Ny) (13)

TT@+N) T

We note that the explicit mention of the state of knowleéddguseful, because it reinforces
the notion that probabilities are subjective. Nonetheless, once this conceptis firmly in plac
the notation simply adds clutter. In the remainder of this tutorial, we shall not mention
explicitly.

In closing this section, we emphasize that, although the Bayesian and classical approac
may sometimes yield the same prediction, they are fundamentally different methods f
learning from data. As an illustration, let us revisit the thumbtack problem. Here, the
Bayesian “estimate” for the physical probability of heads is obtained in a manner that |
essentially the opposite of the classical approach.

Namely, in the classical approachis fixed (albeit unknown), and we imagine all data
sets of sizeN thatmay begenerated by sampling from the binomial distribution determined
by 6. Each data seD will occur with some probabilityp(D |6) and will produce an
estimate®* (D). To evaluate an estimator, we compute the expectation and variance of tt
estimate with respect to all such data sets:

Eppis(©*) =) p(D]6)6*(D)
D

(14)
Varyo0)(0%) = Y p(D16) (0*(D) — Epp)(67))?
D

We then choose an estimator that somehow balances thé bidSy(p |9y (¢*)) and variance

of these estimates over the possible value®fbrFinally, we apply this estimator to the
data set that we actually observe. A commonly-used estimator is the maximume-likelihoc
(ML) estimator, which selects the value @that maximizes the likelihoog(D | 6). For
binomial sampling, we have

Nk
Zrkzl Ny

In contrast, in the Bayesian approaéhis fixed, and we imagine all possible value®of
from which this data setould have beegenerated. Givefy, the “estimate” of the physical
probability of heads is jugt itself. Nonetheless, we are uncertain ab®uand so our final
estimate is the expectation @fwith respect to our posterior beliefs about its value:

O (D) =

Epw@ 0.6 (0) =/9 p@©|D,§) do (15)

The expectations in Egs. (14) and (15) are different and, in many cases, lead to differe
“estimates”. One way to frame this difference is to say that the classical and Bayesi:
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approaches have different definitions for what it means to be a good estimator. Bo
solutions are “correct” in that they are self consistent. Unfortunately, both methods ha
their drawbacks, which has lead to endless debates about the merit of each approc
For example, Bayesians argue that it does not make sense to consider the expectatior
Eqg. (14), because we only see a single data set. If we saw more than one data set,
should combine them into one larger data set. In contrast, classical statisticians argue t
sufficiently accurate priors can not be assessed in many situations. The common view tl
seems to be emerging is that one should use whatever method that is most sensible for
task at hand. We share this view, although we also believe that the Bayesian approach
been under used, especially in light of its advantages mentioned in the introduction (poir
three and four). Consequently, in this paper, we concentrate on the Bayesian approach

3. Bayesian networks

So far, we have considered only simple problems with one or a few variables. In real dat
mining problems, however, we are typically interested in looking for relationships amon
a large number of variables. The Bayesian network is a representation suited to this ta
It is a graphical model that efficiently encodes the joint probability distribution (physical
or Bayesian) for a large set of variables. In this section, we define a Bayesian network a
show how one can be constructed from prior knowledge.

A Bayesian network for a set of variabl¥s= {X4, ..., X,} consists of (1) a network
structureSthat encodes a set of conditional independence assertions about variabjes in
and (2) a seP of local probability distributions associated with each variable. Together,
these components define the joint probability distributionXoiThe network structur&
is a directed acyclic graph. The nodesSrare in one-to-one correspondence with the
variablesX. We useX; to denote both the variable and its corresponding nodePantb
denote the parents of nodg in Sas well as the variables corresponding to those parents
The lack of possible arcs irs encode conditional independencies. In particular, given
structuresS, the joint probability distribution foKX is given by

pe) =[] pCx | pay) (16)

i=1

The local probability distribution® are the distributions corresponding to the terms in the
product of Eg. (16). Consequently, the peé® P) encodes the joint distributiop(x).

The probabilities encoded by a Bayesian network may be Bayesian or physical. Whe
building Bayesian networks from prior knowledge alone, the probabilities will be Bayesiar
When learning these networks from data, the probabilities will be physical (and their value
may be uncertain). In subsequent sections, we describe how we can learn the struct
and probabilities of a Bayesian network from data. In the remainder of this section, w
explore the construction of Bayesian networks from prior knowledge. As we shall see |
Section 10, this procedure can be useful in learning Bayesian networks as well.

Toillustrate the process of building a Bayesian network, consider the problem of detectir
credit-card fraud. We begin by determining the variables to model. One possible choi
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p(a=<30)=0.25
p(f=yes) = 0.00001 p(a=30-50)=0.40 p(s=male) = 0.5

Crrand 3 A
> Cewelry

plg=yes|f=yes) = 0.2 p(j=yes|f=yes,a=%*s=* = 0.05

p(g=vyes|f=no)=0.01 p(i=yes|f=no,a=<30,s=male) = 0..0001
p(i=yes|f=no,a=30-50,s=male) = 0.0004
p(j=ves|f=no,a=>50,s=male) = 0.0002
p(i=yes|f=no,a=<30,s=female) = 0..0005
p(i=yes|f=no,a=30-50,s=female) = 0.002
p(=yes|f=no,a=>50,s=female) = 0.001

Figure 3 A Bayesian-network for detecting credit-card fraud. Arcs are drawn from cause to effect. The loce
probability distribution(s) associated with a node are shown adjacent to the node. An asterisk is a shorthand
“any state”.

of variables for our problem israud (F), Gas(G), Jewelry(J), Age(A), andSex(S),
representing whether or not the current purchase is fraudulent, whether or not there wa
gas purchase in the last 24 hours, whether or not there was a jewelry purchase in the las
hours, and the age and sex of the card holder, respectively. The states of these variables
shown in figure 3. Of course, in a realistic problem, we would include many more variable:
Also, we could model the states of one or more of these variables at a finer level of dets
For example, we could lgtgebe a continuous variable.

This initial task is not always straightforward. As part of this task we must (1) correctly
identify the goals of modeling (e.g., prediction versus explanation versus exploration
(2) identify many possible observations that may be relevant to the problem, (3) determil
what subset of those observations is worthwhile to model, and (4) organize the observatic
into variables having mutually exclusive and collectively exhaustive states. Difficulties her
are not unigue to modeling with Bayesian networks, but rather are common to most a
proaches. Although there are no clean solutions, some guidance is offered by decisi
analysts (e.g., Howard and Matheson, 1983) and (when data are available) statistici
(e.g., Tukey, 1977).

In the next phase of Bayesian-network construction, we build a directed acyclic grar
that encodes assertions of conditional independence. One approach for doing so is ba
on the following observations. From the chain rule of probability, we have

pe) = [ P4 X0 ... %) (17)
i=1
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Now, for every X;, there will be some subsél; C {Xq,..., Xj_1} such thatX; and
{X1, ..., Xj_1}\IT; are conditionally independent givéh. That is, for anyX,

PXi | X1, ..., Xi—1) = p(X | 7i) (18)

Combining Egs. (17) and (18), we obtain

n

peo =[] p0xi i) (19)

i=1
Comparing Egs. (16) and (19), we see that the variablegHgts . ., I1,,) correspond to
the Bayesian-network parentBay, ..., Pa,), which in turn fully specify the arcs in the
network structures,

Consequently, to determine the structure of a Bayesian network we (1) order the variab
somehow, and (2) determine the variables sets that satisfy Eq. (18xfar ..., n. In our
example, using the orderir@, A, S, G, J), we have the conditional independencies

p@l f) = p(@
p(s| f,a) = p(s)
pgl f,a,s)=p@lf)
p(jlf.a,s,9) =p(lfas (20)

Thus, we obtain the structure shown in figure 3.

This approach has a serious drawback. If we choose the variable order carelessly,
resulting network structure may fail to reveal many conditional independencies among tl
variables. For example, if we construct a Bayesian network for the fraud problem usir
the ordering(J, G, S, A, F), we obtain a fully connected network structure. Thus, in the
worst case, we have to explon¢ variable orderings to find the best one. Fortunately,
there is another technique for constructing Bayesian networks that does not require
ordering. The approach is based on two observations: (1) people can often readily ass
causal relationships among variables, and (2) causal relationships typically correspond
assertions of conditional dependence. In particular, to construct a Bayesian network fo
given set of variables, we simply draw arcs from cause variables to their immediate effec
Inalmostall cases, doing so results in a network structure that satisfies the definition Eq. (1
For example, given the assertions tRedudis a direct cause dbas andFraud, Age and
Sexare direct causes dewelry we obtain the network structure in figure 3. The causal
semantics of Bayesian networks are in large part responsible for the success of Bayes
networks as a representation for expert systems (Heckerman et al., 1995a). In Section
we will see how to learn causal relationships from data using these causal semantics.

In the final step of constructing a Bayesian network, we assess the local probabili
distribution(s)p(x; | pa ). In our fraud example, where all variables are discrete, we asses
one distribution forX; for every configuration oPg. Example distributions are shown in
figure 3.
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Note that, although we have described these construction steps as a simple sequence,
are often intermingled in practice. For example, judgments of conditional independent
and/or cause and effect can influence problem formulation. Also, assessments of probabi
can lead to changes in the network structure. Exercises that help one gain familiarity wi
the practice of building Bayesian networks can be found in Jensen (1996).

4. Inference in a Bayesian network

Once we have constructed a Bayesian network (from prior knowledge, data, or a combir
tion), we usually need to determine various probabilities of interest from the model. Fc
example, in our problem concerning fraud detection, we want to know the probability o
fraud given observations of the other variables. This probability is not stored directly i
the model, and hence needs to be computed. In general, the computation of a probabi
of interest given a model is known asobabilistic inference In this section we describe
probabilistic inference in Bayesian networks.

Because a Bayesian network frdetermines a joint probability distribution fot, we
can—in principle—use the Bayesian network to compute any probability of interest. Fc
example, from the Bayesian network in figure 3, the probability of fraud given observation
of the other variables can be computed as follows:

p(f,a,s,g,j): p(f,a,s,g.j)
p(a5s’g’j) Zf’ p(f/»avsagaj)

p(fla,s g, j)= (21)

For problems with many variables, however, this direct approach is not practical. Fortt
nately, at least when all variables are discrete, we can exploit the conditional independenc
encoded in a Bayesian network to make this computation more efficient. In our exampl
given the conditional independencies in Eq. (20), Eq. (21) becomes

p(fp@pes)p@l fHp(lf,as)
Y p(fHp@p)p@l fHp(jlf.a,s)
___pHp@l HpGlfas
T X p(f)p@l fypilfla,s)

p(fla,s g, j) =

(22)

Several researchers have developed probabilistic inference algorithms for Bayesian r
works with discrete variables that exploit conditional independence roughly as we hay
described, although with different twists. For example, Howard and Matheson (1981
Olmsted (1983), and Shachter (1988) developed an algorithm that reverses arcs in the 1
work structure until the answer to the given probabilistic query can be read directly from th
graph. Inthis algorithm, each arc reversal corresponds to an application of Bayes’ theore
Pearl (1986) developed a message-passing scheme that updates the probability distribut
for each node in a Bayesian network in response to observations of one or more variabl
Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), and Dawid (1992) created
algorithm that first transforms the Bayesian network into a tree where each node in the tr
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corresponds to a subset of variablexXinThe algorithm then exploits several mathemati-
cal properties of this tree to perform probabilistic inference. Most recently, D’Ambrosic
(1991) developed an inference algorithm that simplifies sums and products symbolicall
as in the transformation from Eq. (21) to (22). The most commonly used algorithm fo
discrete variables is that of Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), &
Dawid (1992).

Methods for exact inference in Bayesian networks that encode multivariate-Gaussian
Gaussian-mixture distributions have been developed by Shachter and Kenley (1989) ¢
Lauritzen (1992), respectively. These methods also use assertions of conditional indep
dence to simplify inference. Approximate methods for inference in Bayesian network
with other distributions, such as the generalized linear-regression model, have also be
developed (Saul et al., 1996; Jaakkola and Jordan, 1996).

Although we use conditional independence to simplify probabilistic inference, exact in
ference in an arbitrary Bayesian network for discrete variables is NP-hard (Cooper, 199
Even approximate inference (for example, Monte-Carlo methods) is NP-hard (Dagum al
Luby, 1994). The source of the difficulty lies in undirected cycles in the Bayesian-networ|
structure—cycles in the structure where we ignore the directionality of the arcs. (If we ad
an arc fromAgeto Gasin the network structure of figure 3, then we obtain a structure
with one undirected cycleF-G-A-J-F.) When a Bayesian-network structure contains
many undirected cycles, inference is intractable. For many applications, however, stru
tures are simple enough (or can be simplified sufficiently without sacrificing much ac
curacy) so that inference is efficient. For those applications where generic inferen
methods are impractical, researchers are developing techniques that are custom tailc
to particular network topologies (Heckerman 1989; Suermondt and Cooper, 1991; Sc
etal., 1996; Jaakkola and Jordan, 1996) or to particular inference queries (Ramamurthi
Agogino, 1988; Shachter et al., 1990; Jensen and Andersen, 1990; Darwiche and Prov
1995).

5. Learning probabilities in a Bayesian network

In the next several sections, we show how to refine the structure and local probabili
distributions of a Bayesian network given data. The result is set of techniques for da
mining that combines prior knowledge with data to produce improved knowledge. i
this section, we consider the simplest version of this problem: using data to update t
probabilities of a given Bayesian network structure.

Recall that, in the thumbtack problem, we do not learn the probability of heads. Instea
we update our posterior distribution for the variable that represents the physical probabili
ofheads. We follow the same approach for probabilities in a Bayesian network. In particule
we assume—perhaps from causal knowledge about the problem—that the physical jo
probability distribution forX can be encoded in some network structBréVe write

p(x| 65, S") = |

p(%i | pa;, 6;, S (23)

n
=1
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where#); is the vector of parameters for the distributip(x; | pa;, 8;, S"), 65 is the vector

of parametergf., . .., 6,,), andS" denotes the event (or “hypothesis” in statistics nomen-
clature) that the physical joint probability distribution can be factored accordisg to
addition, we assume that we have a random sambpte {xy, ..., Xy} from the physical
joint probability distribution ofX. We refer to an element of D as acase As in Section 2,
we encode our uncertainty about the parameigiisy defining a (vector-valued) variable
®s, and assessing a prior probability density functjifs | S"). The problem of learning
probabilities in a Bayesian network can now be stated simply: Given a random sBimple
compute the posterior distributign8s | D, ).

We refer to the distributiorp(x; | pa;, 6;, ), viewed as a function of;, as alocal
distribution function Readers familiar with methods for supervised learning will recog-
nize that a local distribution function is nothing more than a probabilistic classification o
regression function. Thus, a Bayesian network can be viewed as a collection of probabil
tic classification/regression models, organized by conditional-independence relationshi
Examples of classification/regression models that produce probabilistic outputs include li
ear regression, generalized linear regression, probabilistic neural networks (e.g., MacK
1992a, 1992h), probabilistic decision trees (e.g., Buntine, 1993), kernel density estimati
methods (Book, 1994), and dictionary methods (Friedman, 1995). In principle, any of the:
forms can be used to learn probabilities in a Bayesian network; and, in most cases, Bayes
techniques for learning are available. Nonetheless, the most studied models include the
restricted multinomial distribution (e.g., Cooper and Herskovits, 1992), linear regressio
with Gaussian noise (e.g., Buntine, 1994; Heckerman and Geiger, 1996), and generaliz
linear regression (e.g., MacKay, 1992a, 1992b; Neal, 1993; and Saul et al., 1996).

In this tutorial, we illustrate the basic ideas for learning probabilities (and structure) usin
the unrestricted multinomial distribution. In this case, each variXhle X is discrete,
havingr; possible valuex, ..., x", and each local distribution function is collection
of multinomial distributions, one distribution for each configuratiorPaf. Namely, we
assume

p(x | paij, 6. S") =6 > 0 (24)

where pail, ...,pa,qi (@ = [lxepa i) denote the configurations d?a, and 6; =
((ei,-k)[(‘zz)?‘zl are the parameters. (The parameigy is given by 1— Y ', 6x.) For
convenience, we define the vector of parameters

0ij = (Gij2, ..., Gijr;)

foralli andj. We use the term “unrestricted” to contrast this distribution with multinomial
distributions that are low-dimensional function$af—for example, the generalized linear-
regression model.

Given this class of local distribution functions, we can compute the posterior distributio
p(fs| D, ") efficiently and in closed form under two assumptions. The first assumptior
is that there are no missing data in the random sarbpl&V/e say that the random sample
D is complete The second assumption is that the parameter veégrare mutually
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independerit That is,

n g
p@sISH=]]]]re®; I

i=1j=1

We refer to this assumption, which was introduced by Spiegelhalter and Lauritzen (199(
asparameter independence

Under the assumptions of complete data and parameter independence, the parame
remain independent given a random sample:

n G
p@sID, ) =[] r®;1D, " (25)

i=1j=1

Thus, we can update each vector of paraméigrisdependently, just as in the one-variable
case. Assuming each vectl has the prior distribution DiB;; | «ij1, . . . , aijr, ), we obtain
the posterior distribution

p@ij |, D, ") = Dir(0jj | aij1 + Nij1, .. ., aijr, + Nijr,) (26)

whereN;jk is the number of cases Id in which X; = xik andPg = pai'.

As in the thumbtack example, we can average over the possible configurati@nsof
obtain predictions of interest. For example, let us commgey ;1| D, S"), wherexn i1
is the next case to be seen affér Suppose that, in casg 1, Xj = xi" andPg = pai’,
wherek and j depend on. Thus,

i=1

N
pP(Xn41|D, S = Epws| D,@)(H@jk)

To compute this expectation, we first use the fact that the parameters remain independ
givenD:

pP(Xn+1|D, S =f1_[9ijk pOs|D, S d95=1_[/9ijk pdi; | D, S") do;;
i=1 i—1

Then, we use Eg. (12) to obtain

n
ik + N..k
PO+ D, SN =[] "=

] ij

i=1

(27)

Whereaij e ZE:l ijk and Nij = ZE:l Nijk-

These computations are simple because the unrestricted multinomial distributions are
the exponential family. Computations for linear regression with Gaussian noise are equa
straightforward (Buntine, 1994; Heckerman and Geiger, 1996).
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6. Methods for incomplete data

Let us now discuss methods for learning about parameters when the random sample
incomplete (i.e., some variables in some cases are not observed). An important distinct
concerning missing data is whether the absence of an observation is dependent on the ac
states of the variables. For example, a missing datum in a drug study may indicate tt
a patient became too sick—perhaps due to the side effects of the drug—to continue
the study. In contrast, if a variable is hidden (i.e., never observed in any case), then t
absence of this data is independent of state. Although Bayesian methods and graphi
models are suited to the analysis of both situations, methods for handling missing de
where absence is independent of state are simpler than those where absence and stat
dependent. In this tutorial, we concentrate on the simpler situation only. Readers interes
in the more complicated case should see Rubin (1978), Rubins (1986), and Pearl (1995

Continuing with our example using unrestricted multinomial distributions, suppose w
observe a single incomplete case. Yett X andZ c X denote the observed and unob-
served variables in the case, respectively. Under the assumption of parameter independe
we can compute the posterior distribution@yf for network structures as follows:

p@Bij 1y, S) = > ply, S p@ily.z S
= (1- p(pa |y. ") {p@; | S}
+ " p(xkpdl 1y, $){p(6 1% pal, ) (28)
k=1

(See Spiegelhalter and Lauritzen, 1990, for a derivation.) Each term in curly brackets
Eqg. (28) is a Dirichlet distribution. Thus, unless both and all the variables iRa are
observed in casg, the posterior distribution &;; will be a linear combination of Dirichlet
distributions—that is, a Dirichlet mixture with mixing coefficieriis— p(pai' ly, ") and
p(xk pal |y, S, k=1,....1.

When we observe a second incomplete case, some or all of the Dirichlet components
Eqg. (28) will again split into Dirichlet mixtures. As we continue to observe incomplete
cases, each missing value #©ythe posterior distribution fo;; will contain a number of
components that is exponential in the number of cases. In general, for any interesting se
local distribution functions and priors, the exact computation of the posterior distributiol
for 65 will be intractable. Thus, we require an approximation for incomplete data.

6.1. Monte-Carlo methods

One class of approximations is based on Monte-Carlo or sampling methods. These appr
imations can be extremely accurate, provided one is willing to wait long enough for th
computations to converge.

In this section, we discuss one of many Monte-Carlo methods knowiibdrs sampling
introduced by Geman and Geman (1984). Given variales { X, ..., X,} with some
joint distribution p(x), we can use a Gibbs sampler to approximate the expectation o
a function f (x) with respect top(x) as follows. First, we choose an initial state for



96 HECKERMAN

each of the variables iX somehow (e.g., at random). Next, we pick some variale
unassign its current state, and compute its probability distribution given the states of i
othern — 1 variables. Then, we sample a stateXpibased on this probability distribution,
and computef (x). Finally, we iterate the previous two steps, keeping track of the average
value of f (x). In the limit, as the number of cases approach infinity, this average is equal t
Epo (T (X)) provided two conditions are met. First, the Gibbs sampler muistdaticible:

The probability distributiorp(x) must be such that we can eventually sample any possible
configuration ofX given any possible initial configuration of. For example, ifp(x)
contains no zero probabilities, then the Gibbs sampler will be irreducible. Second, eas
X; must be chosen infinitely often. In practice, an algorithm for deterministically rotating
through the variables is typically used. Introductions to Gibbs sampling and other Montt
Carlo methods—including methods for initialization and a discussion of convergence—a
given by Neal (1993) and Madigan and York (1995).

To illustrate Gibbs sampling, let us approximate the probability demg#ly | D, S") for
some particular configuration 6§, given an incomplete data sBt= {y;,...,yn}and a
Bayesian network for discrete variables with independent Dirichlet priors. To approximat
p(fs| D, SM), we firstinitialize the states of the unobserved variables in each case someho
As aresult, we have a complete random saniileSecond, we choose some varialile
(variable X; in casel) that is not observed in the original random sampleand reassign
its state according to the probability distribution

p(xi’| ’ Dc\xil | Sh)
2w PO, De\xir | S

where D¢\ x;; denotes the data s&. with observationx; removed, and the sum in the
denominator runs over all states of variag. As we shall see in Section 7, the terms
in the numerator and denominator can be computed efficiently (see Eq. (35)). Third, v
repeat this reassignment for all unobserved variableB ,irproducing a new complete
random sampld®.. Fourth, we compute the posterior dengitgfs | D, S") as described

in Egs. (25) and (26). Finally, we iterate the previous three steps, and use the average
p(6s | D;, S") as our approximation.

p(X) | De\xir, S") =

6.2. The Gaussian approximation

Monte-Carlo methods yield accurate results, but they are often intractable—for exampl
when the sample size is large. Another approximation that is more efficient than Mont
Carlo methods and often accurate for relatively large samples@abhssian approximation
(e.g., Kass et al., 1988; Kass and Raftery, 1995).

The idea behind this approximation is that, for large amounts of g, D, S")
p(D |85, S")- p(Bs| S can often be approximated as a multivariate-Gaussian distribution
In particular, let

9(8s) = log(p(D |65, S") - p(Bs|S") (29)

Also, defineds to be the configuration ds that maximizegy(6s). This configuration also
maximizesp(fs| D, "), and is known as thmaximum a posterio(MAP) configuration
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of 8s. Expandingg(6s) about theds, we obtain
. 1 . .
9(6s) ~ g(6s) + —5 (65 — ) A(6s — b5) (30)

where(@s — 05)t is the transpose of row vectt¥s — 0s), andAis the negative Hessian of
g(6s) evaluated abs. Raisingg(6s) to the power ok and using Eq. (29), we obtain

p(Bs| D, S") o p(D|6s, S p(8s| S")
~ p(D|6s, S") p(fs| S exp{—%(es — 05 ABs — ésr} (31)

Hence, this approximation fqu(8s | D, S") is approximately Gaussian.

To compute the Gaussian approximation, we must com@yts well as the negative
Hessian ofy(6s) evaluated afs. In the following section, we discuss methods for finding
6s. Meng and Rubin (1991) describe a numerical technique for computing the secor
derivatives. Raftery (1995) shows how to approximate the Hessian using likelihood-rati
tests that are available in many statistical packages. Thiesson (1995) demonstrates t
for unrestricted multinomial distributions, the second derivatives can be computed usir
Bayesian-network inference.

6.3. The MAP and ML approximations and the EM algorithm

As the sample size of the data increases, the Gaussian peak will become sharper, tending
delta function at the MAP configuratidh. In this limit, we do not need to compute averages
or expectations. Instead, we simply make predictions based on the MAP configuration.

A further approximation is based on the observation that, as the sample size increas
the effect of the priop(8s | ") diminishes. Thus, we can approxima#gby the maximum
maximum likelihoodML) configuration offs:

65 = arg maxp(D | s, ShY|

One class of techniques for finding a ML or MAP is gradient-based optimization. Fo
example, we can use gradient ascent, where we follow the derivatigg@Hfor the like-
lihood p(D | 6s, S") to a local maximum. Russell et al. (1995) and Thiesson (1995) show
how to compute the derivatives of the likelihood for a Bayesian network with unrestricte
multinomial distributions. Buntine (1994) discusses the more general case where the like
hood function comes from the exponential family. Of course, these gradient-based methc
find only local maxima.

Another technique for finding a local ML or MAP is the expectation-maximization (EM)
algorithm (Dempster et al., 1977). To find a local MAP or ML, we begin by assigning
a configuration tds somehow (e.g., at random). Next, we compute ékpectedsuffi-
cient statistics for a complete data set, where expectation is taken with respect to the jo
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distribution forX conditioned on the assigned configuratiorfgfand the known dat®.
In our discrete example, we compute

N .
Epx D0, 9 (Nijk) = Z p(x, pa |y, 65, S") (32)

=1

wherey, is the possibly incompletéh case inD. WhenX; and all the variables iRg are
observed in casw, the term for this case requires a trivial computation: it is either zero
or one. Otherwise, we can use any Bayesian network inference algorithm to evaluate t
term. This computation is called tlexpectation stepf the EM algorithm.

Next, we use the expected sufficient statistics as if they were actual sufficient statisti
from a complete random samd®. If we are doing an ML calculation, then we determine
the configuration 0B that maximizesp(D¢ | 0s, ). In our discrete example, we have

Epxxip,6, 9 (Nijk)
> k1 Epix| 0,659 (Niji)

If we are doing a MAP calculation, then we determine the configurati@gtbfat maximizes
p(@s| D¢, ). In our discrete example, we hafe

Bijk =

aijk + Epx| .65, 5m (Nijk)
Y h_1(@ijk + Epix| D65 (Nijk))

Bijk =

This assignment is called thmaximization stepf the EM algorithm. Dempster et al.
(1977) showed that, under certain regularity conditions, iteration of the expectation ar
maximization steps will converge to a local maximum. The EM algorithm is typically
applied when sufficient statistics exist (i.e., when local distribution functions are in the ex
ponential family), although generalizations of the EM have been used for more complicate
local distributions (see, e.g., Saul et al. 1996).

7. Learning parameters and structure

Now we consider the problem of learning about both the structure and probabilities of
Bayesian network given data.

Assuming we think structure can be improved, we must be uncertain about the ne
work structure that encodes the physical joint probability distributiorfdfollowing the
Bayesian approach, we encode this uncertainty by defining a (discrete) variable whose stz
correspond to the possible network-structure hypoth8%eand assessing the probabilities
p(S"). Then, given a random samglefrom the physical probability distribution fot, we
compute the posterior distribution(S" | D) and the posterior distributions(@s | D, S"),
and use these distributions in turn to compute expectations of interest. For example,
predict the next case after seeibgwe compute

POw+11D) = 3PS D) [ Pixus |65, ) pe6i | D. ) o (33)
Syl
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In performing the sum, we assume that the network-structure hypotheses are mutue
exclusive. We return to this point in Section 9.

The computation op(@s | D, S") is as we have described in the previous two sections.
The computation op(S" | D) is also straightforward, at least in principle. From Bayes'’
theorem, we have

p(S" D) = p(S") p(D|S")/p(D) (34)

where p(D) is a normalization constant that does not depend upon structure. Thus, |
determine the posterior distribution for network structures, we need to compute the margir
likelihood of the data (D | S")) for each possible structure.

We discuss the computation of marginal likelihoods in detail in Section 9. As an in:
troduction, consider our example with unrestricted multinomial distributions, paramete
independence, Dirichlet priors, and complete data. As we have discussed, when there
no missing data, each parameter veégris updated independently. In effect, we have
a separate multi-sided thumbtack problem for eveayd j. Consequently, the marginal
likelihood of the data is the just the product of the marginal likelihoods for each pair
(given by Eq. (13)):

I

L D) I (eijk + Nijk)
PDISh = gjljl T (aij + Nij) kl:[l I (@ije) >

This formula was first derived by Cooper and Herskovits (1992).

Unfortunately, the full Bayesian approach that we have described is often impractice
One important computation bottleneck is produced by the average over models in Eq. (3
Given a problem described lnyvariables, the number of possible structure hypotheses is
more than exponential in. Consequently, in situations where the user can not exclude
almost all of these hypotheses, the approach is intractable.

Statisticians, who have been confronted by this problem for decades in the context
other types of models, use two approaches to address this probiedel selectiormnd
selective model averagindhe former approach is to select a “good” model (i.e., structure
hypothesis) from among all possible models, and use it as if it were the correct model. Tl
latter approach is to select a manageable number of good models from among all possi
models and pretend that these models are exhaustive. These related approaches raise se
important questions. In particular, do these approaches yield accurate results when app!
to Bayesian-network structures? If so, how do we search for good models? And how
we decide whether or not a model is “good”?

The questions of accuracy and search are difficult to answer in theory. Nonethele:
several researchers have shown experimentally that the selection of a single good hypc
esis using greedy search often yields accurate predictions (Cooper and Herskovits, 19
Aliferis and Cooper, 1994; Heckerman et al., 1995b; Spirtes and Meek, 1995; Chickerin
1996), and that model averaging using Monte-Carlo methods can sometimes be efficient
yield even better predictions (Madigan et al., 1996). These results are somewhat surprisi
and are largely responsible for the great deal of recent interest in learning with Bayesi
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networks. In Sections 8 through 10, we consider different definitions of what is means fc
a model to be “good”, and discuss the computations entailed by some of these definitior

We note that model averaging and model selection lead to models that generalize well
newdata. That is, these techniques help us to avoid the overfitting of data. As is suggest
by Eq. (33), Bayesian methods for model averaging and model selection are efficientin t
sense that all cases ivcan be used to both smooth and train the model. As we shall see i
the following two sections, this advantage holds true for the Bayesian approach in gener

8. Criteria for model selection

Most of the literature on learning with Bayesian networks is concerned with model selectiol
In these approaches, sorosterion is used to measure the degree to which a network
structure (equivalence class) fits the prior knowledge and data. A search algorithm is th
used to find an equivalence class that receives a high score by this criterion. Select
model averaging is more complex, because it is often advantageous to identify netwo
structures that are significantly different. In many cases, a single criterion is unlikely t
identify such complementary network structures. In this section, we discuss criteria for tf
simpler problem of model selection. For a discussion of selective model averaging (s
Madigan and Raferty (1994)).

8.1. Relative posterior probability

A criterion thatis often used for model selection is the log of the relative posterior probabilit
log p(D, S") = log p(S") + log p(D | S").* The logarithm is used for numerical conve-
nience. This criterion has two components: the log prior and the log marginal likelihooc
In Section 9, we examine the computation of the log marginal likelihood. In Section 10.2
we discuss the assessment of network-structure priors. Note that our comments about th
terms are also relevant to the full Bayesian approach.

The log marginal likelihood has the following interesting interpretation described by
Dawid (1984). From the chain rule of probability, we have

N
log p(D |S") =) "log p(x X1, ..., %1, S (36)
1=1

The termp(X | X1, ..., xi_1, §") is the prediction fox; made by mode§” after averaging
over its parameters. The log of this term can be thought of as the utility or reward for thi
prediction under the utility function log(x).12 Thus, a model with the highest log marginal
likelihood (or the highest posterior probability, assuming equal priors on structure) is als
a model that is the best sequential predictor of the Batander the log utility function.
Dawid (1984) also notes the relationship between this criterion and cross validatiol
When using one form of cross validation, knowrlesve-one-outross validation, we first
train a model on all but one of the cases in the random sample-Msay,{X1, ..., X|_1,
Xi11,---,Xn}- Then, we predict the omitted case, and reward this prediction under som
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utility function. Finally, we repeat this procedure for every case in the random sample
and sum the rewards for each prediction. If the prediction is probabilistic and the utilit
function is logp(x), we obtain the cross-validation criterion

N
CV(S", D) =) log p(xi | Vi, ") (37)
=1

which is similar to Eq. (36). One problem with this criterion is that training and test case
are interchanged. For example, when we compie | V1, S") in Eq. (37), we use for

training andk, for testing. Whereas, when we compwpig, | V», S"), we use; for training

andx; for testing. Such interchanges can lead to the selection of a model that over fits ti
data (Dawid, 1984). Various approaches for attenuating this problem have been describ
but we see from Eq. (36) that the log-marginal-likelihood criterion avoids the problen
altogether. Namely, when using this criterion, we never interchange training and test cas

8.2. Local criteria

Consider the problem of diagnosing an ailment given the observation of a set of finding
Suppose that the set of ailments under consideration are mutually exclusive and collectiv
exhaustive, so that we may represent these ailments using a single vaviablpossible
Bayesian network for this classification problem is shown in figure 4.

The posterior-probability criterion iglobal in the sense that it is equally sensitive to all
possible dependencies. In the diagnosis problem, the posterior-probability criterion is ju
as sensitive to dependencies among the finding variables as it is to dependencies betw
ailment and findings. Assuming that we observe all (or perhaps all but a few) of the finding
in D, a more reasonable criterion would logal in the sense that it ignores dependencies
among findings and is sensitive only to the dependencies among the ailment and findin
This observation applies to all classification and regression problems with complete dat:

One such local criterion, suggested by Spiegelhalter et al. (1993), is a variation on tl
sequential log-marginal-likelihood criterion:

N
LC(S", D) =) logp(a | Fi, Di, S (38)
1=1

Caitment)

Figure 4 A Bayesian-network structure for medical diagnosis.
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wherea andF, denote the observation of the ailmefitand findingsF in thelth case,
respectively. In other words, to compute ftie term in the product, we train our model
Swith the firstl — 1 cases, and then determine how well it predicts the ailment given the
findings in thelth case. We can view this criterion, like the log-marginal-likelihood, as a
form of cross validation where training and test cases are never interchanged.

The log utility function has interesting theoretical properties, but it is sometimes inac
curate for real-world problems. In general, an appropriate reward or utility function will
depend on the decision-making problem or problems to which the probabilistic models a
applied. Howard and Matheson (1983) have collected a series of articles describing he
to construct utility models for specific decision problems. Once we construct such utilit
models, we can use suitably modified forms of Eq. (38) for model selection.

9. Computation of the marginal likelihood

As mentioned, an often-used criterion for model selection is the log relative posteric
probability logp(D, S") = log p(S") + log p(D|S"). In this section, we discuss the
computation of the second component of this criterion: the log marginal likelihood.

Given (1) local distribution functions in the exponential family, (2) mutual independence
of the parameter@;, (3) conjugate priors for these parameters, and (4) complete data, th
log marginal likelihood can be computed efficiently and in closed form. Equation (35
is an example for unrestricted multinomial distributions. Buntine (1994) and Heckerma
and Geiger (1996) discuss the computation for other local distribution functions. Here, w
concentrate on approximations for incomplete data.

The Monte-Carlo and Gaussian approximations for learning about parameters that \
discussed in Section 6 are also useful for computing the marginal likelihood given incon
plete data. One Monte-Carlo approach, described by Chib (1995) and Raftery (1996), uc
Bayes’ theorem:

P(Os| S p(D | 6s, S

DIS) =
PO1S) p@s| D, S

(39)

For any configuration ofls, the prior term in the numerator can be evaluated directly. In
addition, the likelihood term in the numerator can be computed using Bayesian-netwo
inference. Finally, the posterior term in the denominator can be computed using Gibl
sampling, as we described in Section 6.1. Other, more sophisticated Monte-Carlo methc
are described by DiCiccio et al. (1995).

As we have discussed, Monte-Carlo methods are accurate but computationally inefficie
especially for large databases. In contrast, methods based on the Gaussian approxima
are more efficient, and can be as accurate as Monte-Carlo methods on large data sets.

Recall that, for large amounts of dafaD | 6s, S")- p(6s | S") can often be approximated
as a multivariate-Gaussian distribution. Consequently,

p(D| S = f p(D |6, S p(ds| S dos (40)



BAYESIAN NETWORKS FOR DATA MINING 103

can be evaluated in closed form. In particular, substituting Eq. (31) into Eq. (40), integratin
and taking the logarithm of the result, we obtain the approximation:

logp(D|S") ~ logp(D|68s, S") +logp(fs|S") + %Iog(Zn) - % log|Al  (41)

whered is the dimension 0§(8s). For a Bayesian network with unrestricted multinomial
distributions, this dimension is typically given By, gi (ri — 1). Sometimes, when there
are hidden variables, this dimension is lower. See Geiger et al. (1996) for a discussion
this point.

This approximation technique for integration is knowi.aplacés methogdand we refer
to Eq. (41) as theaplace approximationKass et al. (1988) have shown that, under certain
regularity conditions, the relative error of this approximatio®i€l/N), whereN is the
number of cases iD. Thus, the Laplace approximation can be extremely accurate. Fo
more detailed discussions of this approximation, see—for example—Kass et al. (1988) a
Kass and Raftery (1995).

Although Laplace’s approximation is efficient relative to Monte-Carlo approaches, th
computation ofl A| is nevertheless intensive for large-dimension models. One simplifica:
tion is to approximateA| using only the diagonal elements of the HesstarAlthough in
so doing, we incorrectly impose independencies among the parameters, researchers |
shown that the approximation can be accurate in some circumstances (see, e.g., Bec
and Le Cun, 1989, and Chickering and Heckerman, 1996). Another efficient variant
Laplace’s approximation is described by Cheeseman and Stutz (1995), who use the appr
imation in the AutoClass program for data clustering (see also Chickering and Heckerma
1996.)

We obtain a very efficient (but less accurate) approximation by retaining only those tern
in Eq. (41) that increase witN: log p(D | 8s, S"), which increases linearly witN, and
log | A|, which increases aslog N. Also, for largeN, 8 can be approximated by the ML
configuration offs. Thus, we obtain

logp(D | SH) ~ logp(D | 6s, S") — g log N (42)

This approximation is called thHgayesian information criterio(BIC), and was first derived
by Schwarz (1978).

The BIC approximation is interesting in several respects. First, it does not depend on t|
prior. Consequently, we can use the approximation without assessing’d.pBecond, the
approximation is quite intuitive. Namely, it contains a term measuring how well the param
eterized model predicts the data (lp¢D | 0s, S") and a term that punishes the complexity
of the model §/2logN). Third, the BIC approximation is exactly minus the Minimum
Description Length (MDL) criterion described by Rissanen (1987). Thus, recalling the
discussion in Section 9, we see that the marginal likelihood provides a connection betwe
cross validation and MDL.
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10. Priors

To compute the relative posterior probability of a network structure, we must assess t
structure priop(S") and the parameter priopg6s | S") (unless we are using large-sample
approximations such as BIC/MDL). The parameter prip(8s | S") are also required for
the alternative scoring functions discussed in Section 8. Unfortunately, when many netwa
structures are possible, these assessments will be intractable. Nonetheless, under ce
assumptions, we can derive the structure and parameter priors for many network structu
from a manageable number of direct assessments. Several authors have discussed
assumptions and corresponding methods for deriving priors (Cooper and Herskovits, 19
1992; Buntine, 1991; Spiegelhalter et al., 1993; Heckerman et al., 1995b; Heckerman a
Geiger, 1996). In this section, we examine some of these approaches.

10.1. Priors on network parameters

First, let us consider the assessment of priors for the parameters of network structur
We consider the approach of Heckerman et al. (1995b) who address the case where
local distribution functions are unrestricted multinomial distributions and the assumptio
of parameter independence holds.

Their approach is based on two key concepts: independence equivalence and distribut
equivalence. We say that two Bayesian-network structures foeindependence equiva-
lentif they represent the same set of conditional-independence assertidhkama and
Pearl, 1990). For example, giveh= {X,Y, Z}, the network structureX — Y — Z,
X« Y — Z,andX < Y « Zrepresentonly the independence assertionXtaatdZ are
conditionally independent giveyi. Consequently, these network structures are equivalent
As another example,@mplete network structuie one that has no missing edge—that s,
it encodes no assertion of conditional independence. \Mrmmtaina variables, there are
n! possible complete network structures: one network structure for each possible orderi
of the variables. All complete network structures fifx) are independence equivalent. In
general, two network structures are independence equivalent if and only if they have t
same structure ignoring arc directions and the same v-structures (Verma and Pearl, 19¢
A v-structureis an ordered tupl€X, Y, Z) such that there is an arc froito Y and from
ZtoY, but no arc betweeX andZ.

The concept of distribution equivalence is closely related to that of independence equiv
lence. Suppose that all Bayesian networksfamder consideration have local distribution
functions in the familyF. This is not a restriction, per se, becauSean be a large family.
We say that two Bayesian-network structu@sand S; for X aredistribution equivalent
with respect tdqwrt) F if they represent the same joint probability distributionsXe+that
is, if, for every 0, there exists @, such thatp(x| s, §f) = p(X|0s, Q), and vice
versa.

Distribution equivalence wrt sons€ implies independence equivalence, but the converse
does not hold. For example, whénis the family of generalized linear-regression models,
the complete network structures for> 3 variables do not represent the same sets of
distributions. Nonetheless, there are familigs—-for example, unrestricted multinomial
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distributions and linear-regression models with Gaussian noise—where independence ec
valence implies distribution equivalence wft(Heckerman and Geiger, 1996).

The notion of distribution equivalence is important, because if two network structure
S and$; are distribution equivalent wrt to a givef, then the hypotheses associated with
these two structures are identical—that$,= $ Thus, for example, if5; and S, are
distribution equivalent, then their probabilities must be equal in any state of informatior
Heckerman et al. (1995b) call this propehypothesis equivalence

In light of this property, we should associate each hypothesis with an equivalence cla
of structures rather than a single network structure, and our methods for learning netwc
structure should actually be interpreted as methods for learning equivalence classes
network structures (although, for the sake of brevity, we often blur this distinction). Thus
for example, the sum over network-structure hypotheses in Eq. (33) should be replac
with a sum over equivalence-class hypotheses. An efficient algorithm for identifying th
equivalence class of a given network structure can be found in Chickering (1995).

We note that hypothesis equivalence holds provided we interpret Bayesian-network strt
ture simply as a representation of conditional independence. Nonetheless, stronger def
tions of Bayesian networks exist where arcs have a causal interpretation (see Section
Heckerman et al. (1995b) and Heckerman (1995) argue that, although it is unreasona
to assume hypothesis equivalence when working with causal Bayesian networks, it is oft
reasonable to adopt a weaker assumptiotikefihood equivalencewhich says that the
observations in a database can not help to discriminate two equivalent network structure

Now let us return to the main issue of this section: the derivation of priors from a man
ageable number of assessments. Geiger and Heckerman (1995) show that the assump
of parameter independence and likelihood equivalence imply that the parameters for a
completenetwork structureS, must have a Dirichlet distribution with constraints on the
hyperparameters given by

aije = o p(x, pal | §) (43)

whereq is the user’s equivalent sample sizeand p(xi", pal | §) is computed from the
user’s joint probability distributiorp(x | §). This result is rather remarkable, as the two
assumptions leading to the constrained Dirichlet solution are qualitative.

To determine the priors for parametersinfompletenetwork structures, Heckerman
et al. (1995b) use the assumptionpaframeter modularitywhich says that ifX; has the
same parents in network structui®sand S, then

p(6i | S!) = p(6ij | )

for j = 1,...,qi. They call this property parameter modularity, because it says that th
distributions for paramete; depend only on the structure of the network that is local to
variable Xj—namely, X; and its parents.

Given the assumptions of parameter modularity and parameter independence, it i
simple matter to construct priors for the parameters of an arbitrary network structure give
the priors on complete network structures. In particular, given parameter independence,
construct the priors for the parameters of each node separately. Furthermore X e
parentPa in the given network structure, we identify a complete network structure where
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Xi has these parents, and use Eq. (43) and parameter modularity to determine the pri
for this node. The result is that all termgy for all network structures are determined
by Eq. (43). Thus, from the assessmeamtand p(x| '), we can derive the parameter
priors for all possible network structures. Combining Eq. (43) with Eq. (35), we obtain ¢
model-selection criterion that assigns equal marginal likelihoods to independence equivals
network structures.

We can assegs(x | §) by constructing a Bayesian network, callegrar network that
encodes this joint distribution. Heckerman et al. (1995b) discuss the construction of th
network.

10.2. Priors on structures

Now, let us consider the assessment of priors on network-structure hypotheses. Note that
alternative criteria described in Section 8 can incorporate prior biases on network-structt
hypotheses. Methods similar to those discussed in this section can be used to assess
biases.

The simplest approach for assigning priors to network-structure hypotheses is to assu
that every hypothesis is equally likely. Of course, this assumption is typically inaccurat
and used only for the sake of convenience. A simple refinement of this approach is to a
the user to exclude various hypotheses (perhaps based on judgments of of cause and eff
and then impose a uniform prior on the remaining hypotheses. We illustrate this approa
in Section 10.3.

Buntine (1991) describes a set of assumptions that leads to a richer yet efficient approz
for assigning priors. The first assumption is that the variables can be ordered (e.g., throt
a knowledge of time precedence). The second assumption is that the presence or absen:
possible arcs are mutually independent. Given these assumgptions,1)/2 probability
assessments (one for each possible arc in an ordering) determines the prior probability
every possible network-structure hypothesis. One extension to this approach is to allow
multiple possible orderings. One simplification is to assume that the probability that an a
is absent or present is independent of the specific arc in question. In this case, only ¢
probability assessment is required.

An alternative approach, described by Heckerman et al. (1995b) uses a prior netwol
The basic idea is to penalize the prior probability of any structure according to some me
sure of deviation between that structure and the prior network. Heckerman et al. (1995
suggest one reasonable measure of deviation.

Madigan et al. (1995) give yet another approach that makes use of imaginary data fron
domain expert. In their approach, a computer program helps the user create a hypothet
set of complete data. Then, using techniques such as those in Section 7, they comg
the posterior probabilities of network-structure hypotheses given this data, assuming t
prior probabilities of hypotheses are uniform. Finally, they use these posterior probabilitie
as priors for the analysis of the real data.

10.3. A simple example

Before we move on to other issues, let us step back and look at our overall approach.
a nutshell, we can construct both structure and parameter priors by constructing a pr
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Table 1 Animagined database for the fraud problem.

Case Fraud Gas Jewelry Age Sex
1 No No No 30-50 Female
2 No No No 30-50 Male

3 Yes Yes Yes >50 Male

4 No No No 30-50 Male

5 No Yes No <30 Female
6 No No No <30 Female
7 No No No >50 Male

8 No No Yes 30-50 Female
9 No Yes No <30 Male

10 No No No <30 Female

network along with additional assessments such as an equivalent sample size and ca
constraints. We then use either Bayesian model selection, selective model averaging,
full model averaging to obtain one or more networks for prediction and/or explanation. |
effect, we have a procedure for using data to improve the structure and probabilities of
initial Bayesian network.

Here, we present a simple artificial example to illustrate this process. Consider again t
problem of fraud detection from Section 3. Suppose we given the datBldaseble 1, and
we want to predict the next case—that is, computey, 1 | D). Let us assert that only two
network-structure hypotheses have appreciable probability: the hypothesis correspond
to the network structure in figure (), and the hypothesis corresponding to the same
structure with an arc added froAgeto Gas(S). Furthermore, let us assert that these two
hypotheses are equally likely—that is(S) = p(S)) = 0.5. In addition, let us use the
parameter priors given by Eq. (43), where= 10 andp(x | §) is given by the prior network
in figure 3. Using Egs. (34) and (35), we obtgitS! | D) = 0.26 andp(S) | D) = 0.74.
Because we have only two models to consider, we can model average according to Eq. (=

POn+1|D) = 0.26 p(xn+1] D, §) +0.74 p(xn+1| D, &)

wherep(xn41 | D, S")isgiven by Eq. (27). (We don’tdisplay these probability distributions
for lack of space.) If we had to choose one model, we would ch&sassuming the
posterior-probability criterion is appropriate. Note that the data favors the presence of ti
arc fromAgeto Gasby a factor of three. This is not surprising, because in the two case:
in the database where fraud is absent and gas was purchased recently, the card holder
less than 30 years old.

11. Bayesian networks for supervised learning

As we discussed in Section 5, the local distribution functipos | pa;, 8;, S") are essen-
tially classification/regression models. Therefore, if we are doing supervised learning whe
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the explanatory (input) variables cause the outcome (target) variable and data is comple
then the Bayesian-network and classification/regression approaches are identical.

When data is complete but input/target variables do not have a simple cause/effect re
tionship, tradeoffs emerge between the Bayesian-network approach and other methods.
example, consider the classification problem in figure 4. Here, the Bayesian network e
codes dependencies between findings and ailments as well as among the findings, whe
another classification model such as a decision tree encodes only the relationships betw
findings and ailment. Thus, the decision tree may produce more accurate classificatio
because it can encode the necessary relationships with fewer parameters. Nonetheless
use of local criteria for Bayesian-network model selection mitigates this advantage. Fu
thermore, the Bayesian network provides a more natural representation in which to encc
prior knowledge, thus giving this model a possible advantage for sufficiently small sampl
sizes. Another argument, based on bias-variance analysis, suggests that neither apprt
will dramatically outperform the other (Friedman, 1996).

Singh and Provan (1995) compare the classification accuracy of Bayesian networks &
decision trees using complete data sets from the University of California, Irvine Repositol
of Machine Learning databases. Specifically, they compare C4.5 with an algorithm th
learns the structure and probabilities of a Bayesian network using a variation of the Bayesi
methods we have described. The latter algorithm includes a model-selection phase that
cards some input variables. They show that, overall, Bayesian networks and decisions tr:
have about the same classification error. These results support the argument of Friedr
(1996).

When the input variables cause the target variable and data is incomplete, the dep
dencies between input variables becomes important, as we discussed in the introducti
Bayesian networks provide a natural framework for learning about and encoding these ¢
pendencies. Unfortunately, no studies have been done comparing these approaches:
other methods for handling missing data.

12. Bayesian networks for unsupervised learning

The techniques described in this paper can be used for unsupervised learning. A sim
example is the AutoClass program of Cheeseman and Stutz (1995), which performs d
clustering. The idea behind AutoClass is that there is a single hidden (i.e., never observe
variable that causes the observations. This hidden variable is discrete, and its possible st
correspond to the underlying classes in the data. Thus, AutoClass can be described &
Bayesian network such as the one in figure 5. For reasons of computational efficienc
Cheeseman and Stutz (1995) assume that the discrete variableDge Dy, D3 in the
figure) and user-defined sets of continuous variables (&g, C,, C3} and{Cy, Cs}) are
mutually independent giveld . Given a data sdD, AutoClass searches over variants of this
model (including the number of states of the hidden variable) and selects a variant who
(approximate) posterior probability is a local maximum.

AutoClass is an example where the user presupposes the existence of a hidden varia
In other situations, we may be unsure about the presence of a hidden variable. In sL
cases, we can score models with and without hidden variables to reduce our uncertair
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Figure 5 A Bayesian-network structure for AutoClass. The varidhlis hidden. Its possible states correspond
to the underlying classes in the data.

We illustrate this approach on a real-world case study in Section 14. Alternatively, we me
have little idea about what hidden variables to model. Martin and VanLehn (1995) sugge
an approach for identifying possible hidden variables in such situations.

Their approach is based on the observation that if a set of variables are mutually depe
dent, then a simple explanation is that these variables have a single hidden common ca
rendering them mutually independent. Thus, to identify possible hidden variables, we fir
apply some learning technique to select a model containing no hidden variables. Then,
look for sets of mutually dependent variables in this learned model. For each such set
variables (and combinations thereof), we create a new model containing a hidden varial
that renders that set of variables conditionally independent. We then score the new mod:
possibly finding one better than the original. For example, the model in figure 6(a) has tw
sets of mutually dependent variables. Figure 6(b) shows another model containing hidd
variables suggested by this model.

13. Learning causal relationships

As we have mentioned, the causal semantics of a Bayesian network provide a means
which we can learn causal relationships. In this section, we examine these semantics,
provide a basic discussion on how causal relationships can be learned. We note that th
methods are new and controversial. For critical discussions on both sides of the issue,
Spirtes et al. (1993), Pearl (1995), and Humphreys and Freedman (1995).

For purposes of illustration, suppose we are marketing analysts who want to know whett
or notwe should increase, decrease, or leave alone the exposure of a particular advertiser
in order to maximize our profit from the sales of a product. Let variadtig\) andBuy(B)
represent whether or not an individual has seen the advertisement and has purchasec
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@ (b)

Figure6 (a) ABayesian-network structure for observed variables. (b) A Bayesian-network structure with hidde
variables (shaded) suggested by the network structure in (a).

product, respectively. In one component of our analysis, we would like to learn the physic
probability thatB = true given that weforce Ato be true, and the physical probability that
B = true given that we forceA to be falsé®. We denote these probabilitiggb | 4) and
p(b|a), respectively. One method that we can use to learn these probabilities is to perforn
randomized experiment: select two similar populations at random, fotode true in one
population and false in the other, and obseBvel his method is conceptually simple, but it
may be difficult or expensive to find two similar populations that are suitable for the study

An alternative method follows from causal knowledge. In particular, suppaseises.
Then, whether we forcAto be true or simply observe thats true in the current population,
the advertisement should have the same causal influence on the individual's purcha
Consequentlyp(b|a) = p(b|a), wherep(b| a) is the physical probability thaB = true
given that we observa = true in the current population. Similarlyp(b|a) = p(b|a).

In contrast, ifB causesA, forcing A to some state should not influenBeat all. Therefore,

we havep(b|a) = p(b|é) = p(b). In general, knowledge that causesy allows us

to equatep(y | x) with p(y|X), whereX denotes the intervention that forc¥sto be x.

For purposes of discussion, we use this rule as an operational definition for cause. Pe
(1995) and Heckerman and Shachter (1995) discuss versions of this definition that are m
complete and more precise.

In our example, knowledge thétcausesB allows us to learmp(b| &) andp(b | a) from
observations alone—no randomized experiment is needed. But how are we to determ
whether or nofA caused3? The answer lies in an assumption about the connection betwee
causal and probabilistic dependence known asthesal Markov conditiondescribed by
Spirtes et al. (1993). We say that an directed acyclic g€aigtacausal graph for variables
X if the nodes inC are in a one-to-one correspondence wWithand there is an arc from
nodeX to nodeY in C if and only if X is a direct cause of . The causal Markov condition
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Figure 7. (a) Causal graphs showing for explanations for an observed dependence bathaeiBuy. The
nodeH corresponds to a hidden common causé&ofindBuy. The shaded nod8 indicates that the case has
been included in the database. (b) A Bayesian network for whichuses is the only causal explanation, given
the causal Markov condition.

says that ifC is a causal graph foX, thenC is also a Bayesian-network structure for the
joint physical probability distribution oK. In Section 3, we described a method based
on this condition for constructing Bayesian-network structure from causal assertions. Se
eral researchers (e.g., Spirtes et al., 1993) have found that this condition holds in ma
applications.

Given the causal Markov condition, we can infer causal relationships from conditional
independence and conditional-dependence relationships that we learn from theldztta
us illustrate this process for the marketing example. Suppose we have learned (with hi
Bayesian probability) that the physical probabilitipéh | a) and p(b|a&) are not equal.
Given the causal Markov condition, there are four simple causal explanations for th
dependence: (1A is a cause foB, (2) B is a cause foA, (3) there is a hidden common
cause ofA andB (e.qg., the person’s income), and @pandB are causes for data selection.
This last explanation is known aglection bias Selection bias would occur, for example,
if our database failed to include instances whérand B are false. These four causal
explanations for the presence of the arcs are illustrated in figure 7(a). Of course, mc
complicated explanations—such as the presence of a hidden common cause and selec
bias—are possible.

So far, the causal Markov condition has not told us whether orAncausesB. Sup-
pose, however, that we observe two additional variablasome(l) andLocation (L),
which represent the income and geographic location of the possible purchaser, resp
tively. Furthermore, suppose we learn (with high probability) the Bayesian networl
shown in figure 7(b). Given the causal Markov condition, tmy causal explanation
for the conditional-independence and conditional-dependence relationships encoded in 1
Bayesian network is thakd is a cause foBuy. That is, none of the other explanations
described in the previous paragraph, or combinations thereof, produce the probabilis
relationships encoded in figure 7(b). Based on this observation, Pearl and Verma (19¢
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and Spirtes et al. (1993) have created algorithms for inferring causal relationships fro
dependence relationships for more complicated situations.

14. A case study: College plans

Real-world applications of techniques that we have discussed can be found in Madig
and Raftery (1994), Lauritzen et al. (1994), Singh and Provan (1995), and Friedman a
Goldszmidt (1996). Here, we consider an application that comes from a study by Sewell a
Shah (1968), who investigated factors that influence the intention of high school studer
to attend college. The data have been analyzed by several groups of statisticians, includ
Wittaker (1990) and Spirtes et al. (1993), all of whom have used non-Bayesian technique

Sewell and Shah (1968) measured the following variables for 10,318 Wisconsin hig
school seniorsSex(SEX): male, femaleSocioeconomic StatSES): low, lower middle,
upper middle, highjntelligence Quotien{lQ): low, lower middle, upper middle, high;
Parental EncouragemerPE): low, high; andCollege PlangCP): yes, no. Our goal here
is to understand the (possibly causal) relationships among these variables.

The data are described by the sufficient statistics in Table 2. Each entry denotes t
number of cases in which the five variables take on some particular configuration. The fir
entry corresponds to the configuration SExnale, SES=low, 1Q =low, PE=low, and
C P=yes. The remaining entries correspond to configurations obtained by cycling throuc
the states of each variable such that the last variable (CP) varies most quickly. Thus,
example, the upper (lower) half of the table corresponds to male (female) students.

As a first pass, we analyzed the data assuming no hidden variables. To generate pri
for network parameters, we used the method described in Section 10.1 with an equivals
sample size of 5 and a prior network whewéx | Q) is uniform. (The results were not
sensitive to the choice of parameter priors. For example, none of the results reported
this section changed qualitatively for equivalent sample sizes ranging from 3 to 40.) F
structure priors, we assumed that all network structures were equally likely, except w
excluded structures whe&EXand/orSEShad parents, and/@P had children. Because
the data set was complete, we used Egs. (34) and (35) to compute the posterior probabili
of network structures. The two most likely network structures that we found after ai

Table 2 Sufficient statistics for the Sewall and Shah (1968) study.

4 349 13 64 9 207 33 72 12 126 38 54 10 67 49 43
2 232 27 8 7 201 64 95 12 115 93 92 17 79 119 59
8 166 47 91 6 120 74 110 17 92 148 100 6 42 198 73
4 48 39 57 5 47 123 90 9 41 224 65 8 17 414 54
5 454 9 44 5 312 14 47 8 216 20 35 13 96 28 24

11 285 29 61 19 236 47 88 12 164 62 85 15 113 72 50
7 163 36 72 13 193 75 90 12 174 91 100 20 81 142 77
6 50 36 58 5 70 110 76 12 48 230 81 13 49 360 98

Reproduced by permission from the University of Chicago Pr@4.968 by The University of Chicago.
All rights reserved.
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log p(D|S]) = —45653 log p(D|S7) = 45699
p(S/|D)=10 p(S/ D)= 12x107"

Figure 8 The a posteriori most likely network structures without hidden variables.

exhaustive search over all structures are shown in figure 8. Note that the most likely gra
has a posterior probability that is extremely close to one.

If we adopt the causal Markov assumption and also assume that there are no hidc
variables, then the arcs in both graphs can be interpreted causally. Some results are
surprising—for example the causal influence of socioeconomic status and IQ on colle
plans. Other results are more interesting. For example, from either graph we conclude ti
sex influences college plans only indirectly through parental influence. Also, the two grapt
differ only by the orientation of the arc between PE and 1Q. Either causal relationship i
plausible. We note that the second most likely graph was selected by Spirtes et al. (199
who used a non-Bayesian approach with essentially identical assumptions.

The most suspicious result is the suggestion that socioeconomic status has a dir
influence on 1Q. To question this result, we considered new models obtained from tt
models in figure 8 by replacing this direct influence with a hidden variable pointing tc
both SESandIQ. We also considered models where the hidden variable pointS&E®
IQ, andPE, and none, one, or both of the connecti®@ES—PE and PE—IQ were re-
moved. For each structure, we varied the number of states of the hidden variable from t
to six.

We computed the posterior probability of these models using the Cheeseman-Stutz (19
variant of the Laplace approximation. To find the MA#, we used the EM algorithm,
taking the largest local maximum from among 100 runs with different random initialization:
of 5. Among the models we considered, the one with the highest posterior probability i
shown in figure 9. This model is-20'° times more likely that the best model containing
no hidden variable. The next most likely model containing a hidden variable, which ha
one additional arc from the hidden variable to PE, i46° times less likely than the best
model. Thus, if we again adopt the causal Markov assumption and also assume that
have not omitted a reasonable model from consideration, then we have strong evidence
a hidden variable is influencing both socioeconomic status and 1Q in this population—
sensible result. An examination of the probabilities in figure 9 suggests that the hidde
variable corresponds to some measure of “parent quality”.
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PH=0)=0.63

p(H=1)=0.37
PE H  p(IQ=high|PE,H) H_ pSEShighH)
p(male) = 0.48 low 0.088
low [} 0.098 high 0.51
low 1 0.22 )
high 0 021
high 1 0.49 @
@ SES Q PE  p(CP=yes|SES,IQ,PE,
low low low 0.011
ES  SEX p(PE=high/SES,SEX) low  low  high 0.170
low high low 0.124
W male 032 @ low  high  high 0.53
w female 0.166 high low low 0.093
gh male 0.86 high low high 0.39
gh  female 0.81 log p(S"|D) = —45629 | high  high  low 0.24
high high high 0.84

Figure 9. The a posteriori most likely network structure with a hidden variable. Probabilities shown are MAF
values. Some probabilities are omitted for lack of space.

15. Pointers to literature and software

Like all tutorials, this one is incomplete. For those readers interested in learning mol
about graphical models and methods for learning them, we offer the following additione
references and pointers to software. Buntine (1996) provides another guide to the lit
rature.

Spirtes etal. (1993) and Pearl (1995) use methods based on large-sample approximati
to learn Bayesian networks. In addition, as we have discussed, they describe methods
learning causal relationships from observational data.

In addition to directed models, researchers have explored network structures containi
undirected edges as a knowledge representation. These representations are discussed
in Lauritzen (1982), Verma and Pearl (1990), Frydenberg (1990), and Wittaker (1990
Bayesian methods for learning such models from data are described by Dawid and Lauritz
(1993) and Buntine (1994).

Finally, several research groups have developed software systems for learning graphi
models. For example, Scheines et al. (1994) have developed a software program cal
TETRAD Il for learning about cause and effect. Badsberg (1992) and Hgjsgaard et ¢
(1994) have built systems that can learn with mixed graphical models using a variety
criteria for model selection. Thomas et al. (1992) have created a system called BUGS tt
takes a learning problem specified as a Bayesian network and compiles this problem int
Gibbs-sampler computer program.
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Notes

11.
12.
13.
14.
15.

16.

. This example is taken from Howard (1970).
. Strictly speaking, a probability belongs to a single person, not a collection of people. Nonetheless, in pa

of this discussion, we refer to “our” probability to avoid awkward English.

. Bayesians typically refer t® as anuncertain variable because the value @ is uncertain. In contrast,

classical statisticians often refer@as a random variable. In this text, we refe&t@nd all uncertain/random
variables simply as variables.

. Technically, the hyperparameters of this prior should be small positive numbers sp(#hgt) can be

normalized.

. Recent advances in Monte-Carlo methods have made it possible to work efficiently with many distributior

outside the exponential family. See, for example, Gilks et al. (1995).

. Infact, except for a few, well-characterized exceptions, the exponential family is the only class of distributior

that have sufficient statistics of fixed dimension (Koopman, 1936; Pitman, 1936).

. Low bias and variance are not the only desirable properties of an estimator. Other desirable properties inclt

consistency and robustness.

. As defined here, network-structure hypotheses overlap. For example XgizefiX1, Xz}, any joint dis-

tribution for X that can be factored according the network structure containing no arc, can also be factore
according to the network structu¥y — X». Such overlap presents problems for model averaging, described
in Section 7. Therefore, we should add conditions to the definition to insure no overlap. Heckerman ar
Geiger (1996) describe one such set of conditions.

. The computation is also straightforward if two or more parameters are equal. For details, see Thiesson (19¢
10.

The MAP configuratio's depends on the coordinate system in which the parameter variables are expresse
The expression for the MAP configuration given here is obtained by the following procedure. First, we tran:
form each variable s&; = (6ij2, ..., 6ijr;) to the new coordinate systegqj = (¢ij2, ..., ¢ijr;), where

dijk = 109(bijk /6ij1). kK = 2, ...,r;. This coordinate system, which we denotediyis sometimes referred

to as thecanonicalcoordinate system for the multinomial distribution (see, e.g., Bernardo and Smith, 1994
pp. 199-202). Next, we determine the configuratiopgothat maximizesp(¢s | D¢, S"). Finally, we trans-

form this MAP configuration to the original coordinate system. Using the MAP configuration corresponding
to the coordinate systegy has several advantages, which are discussed in Thiesson (1995b) and MacKa
(1996).

An equivalent criterion that is often used is(pgS” | D)/p(S) | D)) = log(p(S")/p(S)) +log(p(D | ")/
p(D|S)). The ratiop(D | S")/p(D | ) is known as dBayes factor.

This utility function is known as proper scoring rulebecause its use encourages people to assess their true
probabilities. For a characterization of proper scoring rules and this rule in particular, see Bernardo (1979,
One of the technical assumptions used to derive this approximation is that the prior is non-zercdground
Recall the method of equivalent samples for assessing beta and Dirichlet distributions discussed in Sectio
Itis important that these interventions do not interfere with the normal effécbofB. See Heckerman and
Shachter (1995) for a discussion of this point.

Spirtes et al. (1993) also require the an assumption knoviaitafulness We do not need to make this
assumption explicit, because it follows from our assumption ités | S) is a probability density function.
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