
Linear Models 1 – 1

Section 1

Linear Models

Stat341 Handout #1
T. Hastie Apr 2, 1997.

The linear model has been the mainstay of statistics.
Despite the great inroads made by modern nonparametric
regression techniques, linear models remain important,
and so we need to understand them well.

• theory of least squares

• computational aspects

• distributional aspects

• linear models in Splus

• formulas for expressing models

• contrasts

Linear Models 1 – 2

Theory of Least Squares

N measurements xi ∈ Rp, yi ∈ R, i = 1, . . . , N ,
N > p.
Linear Model:

yi = β0 +

p∑
j=1

xijβj + εi (1)

with εi i.i.d., E(εi) = 0, Var(εi) = σ2. We either
assume the linear model is correct, or more realistically
think of it as a linear approximation to the regression
model

E(yi|xi) = f (xi)

Either way, the most popular way of fitting the model is
least squares: pick β0, βj, j = 1, . . . , p, to minimize

RSS(β0, β1, . . . , βp) =

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 (2)

Linear Models 1 – 3

Vector notation

• Absorb β0 into β, and augment the vector xi with a 1
(and let the new dimension be p for simplicity).

• Write

y =


 y1

...
yN




(N×1)

X =


 xT

1
...

xT
N




(N×p)

Then (2) can be written

RSS(β) = ‖y − Xβ‖2 = (y − Xβ)T (y − Xβ) (3)

∂ RSS /∂β = −2XT (y − Xβ) = 0

⇓
β̂ = (XTX)−1XTy

if XTX is invertible. This is the text book solution to
the least squares problem.

Linear Models 1 – 4

Geometry of Least Squares

The geometrical solution is more revealing.

x1

xp

y

ŷ

y − Xβ

Xβ

y − Xβ̂

M

ŷ = Xβ̂ is the orthogonal projection of y onto the
subspace M ⊂ Rn spanned by the columns of X. This
is true even if X is not of full column rank.
Proof: Pythagoras.

y − ŷ ⊥ M
�

(y − Xβ̂) ⊥ xj ∀j (xj is a column of X here)

�
XT (y − Xβ̂) = 0

Linear Models 1 – 5

Computational Aspects

Q-R decomposition of X:

XN×p = QN×NRN×p

= Q1 Q2 R
0

where Q has orthonormal columns: QTQ = I (and
rows?)

R is upper triangular, and may not have full rank:

or

r p − r

R R

00 0

Rank p Rank r < p

R1 R11 R12

Linear Models 1 – 6

• For the full rank case,

‖y − Xβ‖2 =
∥∥QTy − Rβ

∥∥2

=
∥∥QT

1 y − R1β
∥∥2

+
∥∥QT

2 y
∥∥2

⇒ β̂ = R−1
1 QT

1 y

RSS(β̂) =
∥∥QT

2 y
∥∥2

• Effects: e = QTy - Coordinates of y on columns of Q.

• ŷ = Q1Q
T
1 y = Hy = X(XTX)−1XTy — H is

known as the hat matrix (because it puts the hat on
y).

• Non full rank case - Rank(X) = r < p. We need to
solve QT

1 y = R11β1 + R12β2, where Q1 has r
columns. There are infinite solutions (more linear
parameters than equations). We can set β2 = 0, and
solve for β1, but this solution is arbitrary.

• ŷ = Q1Q
T
1 y is still well defined, and unique.

• Least squares computations using the QR
decomposition is standard practice, and is what is
used in Splus. The computations are efficient, and
numerically stable. Inverting XTX directly is seldom
reccomended.

Linear Models 1 – 7

Distributional Aspects

• Cov β̂ = (XTX)−1σ2 = (RTR)−1σ2

• If ε ∼ N(0, σ2I) and the linear model is correct, then
β̂ ∼ N(β, (XTX)−1σ2), and this leads to the t-tests
for individual parameters that often get printed out by
LS software.

• e = QTy ∼ N(Rβ, σ2I), i.e.(
e1

e2

)
∼ N

((
R1β

0

)
, σ2I)

)

and hence ‖e2‖2 =
∥∥QT

2 y
∥∥2

= RSS(β̂) ∼ σ2χ2
N−p

• Under H0 : β = 0, ‖e1‖2 ∼ σ2χ2
p, and e1 is

independent of e2 (why?), hence

‖e1‖2

p
/
‖e2‖2

N − p
∼ Fp,N−p

Note that ‖e1‖2 = ‖ŷ‖2.

Linear Models 1 – 8

A Language for expressing linear models

Venables and Ripley, page 153+, Chambers and Hastie,
18-44.

Hwt ∼ Bwt + Sex

“Heart Weight is modelled as Body Weight plus Sex”
This implies some numerical setup, namely

X =




1 Bwt1 Sex1

1 Bwt2 Sex2
...
1 BwtN SexN


 y =




Hwt1

Hwt2
...

HwtN




Sex is a factor (Male and Female) — What is coded is a
contrast — in this case −1 for Sex = F, 1 for Sex = M.

Question: Why not use a two column matrix instead?


1 0
0 1
... ...
1 0




Note that the columns sum to 1 — we have introduced a
degeneracy or aliasing (more later.)

Linear Models 1 – 9

Formulas in General

y ∼ a + b + c + . . .

where a, b, c, . . . can be

• numeric vectors — these get included into X as is.

• numeric matrices — again these get included as is.

• k-level factors — these typically get converted to
k − 1 column contrast matrices, and then inserted
into X.

• any expression that evaluates to one of the above

For example:

• log(y) ∼sin(x) + cut(z, 3):
here we first apply the log and sin functions to y and
x resp.; cut(z,3) creates a 3-level factor by cutting
z in two places (roughly the tertiles), which in turn
get coded as contrasts and included in X.

• 1/y ∼poly(x, 4) + I(z>0):
poly(x, 4) produces a matrix of orthogonal
polynomials in x — four columns in all, since the
constant is omitted. I(z>0) is a dummy variable
created from the logical variable z>0.

Linear Models 1 – 10

Contrasts

Consider the one-way layout: mi = µ0 + µi, i = 1, . . . , k

X =




1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1




X is not of full rank, so

ŷi = yi = µ′
0 + µ′

i

= µ′′
0 + µ′′

i

and hence there is no way to extract the individual
parameters uniquely. But ŷi − ŷj = µ′

i − µ′
j = µ′′

i − µ′′
j is

unique. The latter is called an estimable contrast.
Similarly µi − µ̄ is estimable.

The Gauss-Markov theorem tells us what contrasts are
estimable - namely Aµ where A is a linear combination
of the rows of X.

It makes sense with one row per mean. These are all we
have, so we cannot extract more parameters than there
are different means.

Linear Models 1 – 11

Contrast Matrix

 m1

...
mk


 =




1
1 C
... (k × k − 1)

1







β0

β1
...

βk−1




with CT1 = 0. Then code ui via Cp×p−1 rather than
Ip×p. Note that if u = Cβ, then 1Tu = 1TCβ = 0, and
∴

∑
i ui = 0.

Example: Helmert contrasts (contr.helmert in Splus):

C =




−1 −1 −1 −1
1 −1 −1 −1
0 2 −1 −1
0 0 3 −1
0 0 0 4




Example: Traditional mean-zero contrasts (contr.sum
in Splus):

C =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−1 −1 −1 −1




Read page 155 of Venables & Ripley and page 32 of
Chambers & Hastie.

Linear Models 1 – 12

More formulas

• interactions — y ∼a:b and y ∼a*b

these imply parameters of the form βij for each
crossing of level i of factor a with level j of factor b.
What about redundancies caused by intercept? and
main effects? How do two way contrasts get coded?

• ∼a*b or equivalently ∼1 + a + b + a:b

This creates an intercept term, main effects for a and
b, and interactions. Suppose we use Ca to code the 3
levels of a (using the sum contrasts), and Cb to code
the 4 levels of b (using the helmert contrasts):

Ca =


 1 0

0 1
−1 −1


 Cb =




−1 −1 −1
1 −1 −1
0 2 −1
0 0 3




Then the model matrix corresponding to the run
sequence (a1, b1), (a1, b2), . . . , (a2, b1), . . . , (a3, b4)
and the formula above would consist of particular
tensor products of 1, Ca and Cb, best illustrated by
the example:

Linear Models 1 – 13

> a <- factor(rep(1:3,c(4,4,4))

> a <- C(a, "contr.sum") #

> b <- factor(rep(1:4,3))

> b <- C(a, "contr.helmert")

> model.matrix(∼ a*b)

(Intercept) a1 a2 b1 b2 b3 a1b1 a2b1 a1b2 a2b2 a1b3 a2b3

1 1 1 0 -1 -1 -1 -1 0 -1 0 -1 0

2 1 1 0 1 -1 -1 1 0 -1 0 -1 0

3 1 1 0 0 2 -1 0 0 2 0 -1 0

4 1 1 0 0 0 3 0 0 0 0 3 0

5 1 0 1 -1 -1 -1 0 -1 0 -1 0 -1

6 1 0 1 1 -1 -1 0 1 0 -1 0 -1

7 1 0 1 0 2 -1 0 0 0 2 0 -1

8 1 0 1 0 0 3 0 0 0 0 0 3

9 1 -1 -1 -1 -1 -1 1 1 1 1 1 1

10 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1

11 1 -1 -1 0 2 -1 0 0 -2 -2 1 1

12 1 -1 -1 0 0 3 0 0 0 0 -3 -3

• ∼a:b ignores the main effects, having just an
intercept and interactions.

• ∼a:b -1 — no intercept, pure interactions.

> model.matrix(∼ a:b -1)

a1b1 a2b1 a3b1 a1b2 a2b2 a3b2 a1b3 a2b3 a3b3 a1b4 a2b4 a3b4

1 1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 1 0 0

5 0 1 0 0 0 0 0 0 0 0 0 0

Linear Models 1 – 14

6 0 0 0 0 1 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 1 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 0

9 0 0 1 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1

• ∼a + a:b or ∼a/b or ∼1 + a+ b %in% a

This specifies nesting, e.g. State, and County within
State.

> model.matrix(∼ a/b)

(Intercept) a1 a2 a1b1 a2b1 a3b1 a1b2 a2b2 a3b2 a1b3 a2b3 a3b3

1 1 1 0 -1 0 0 -1 0 0 -1 0 0

2 1 1 0 1 0 0 -1 0 0 -1 0 0

3 1 1 0 0 0 0 2 0 0 -1 0 0

4 1 1 0 0 0 0 0 0 0 3 0 0

5 1 0 1 0 -1 0 0 -1 0 0 -1 0

6 1 0 1 0 1 0 0 -1 0 0 -1 0

7 1 0 1 0 0 0 0 2 0 0 -1 0

8 1 0 1 0 0 0 0 0 0 0 3 0

9 1 -1 -1 0 0 -1 0 0 -1 0 0 -1

10 1 -1 -1 0 0 1 0 0 -1 0 0 -1

11 1 -1 -1 0 0 0 0 0 2 0 0 -1

12 1 -1 -1 0 0 0 0 0 0 0 0 3

• ∼a*b*c of (a+b)*c — more complicated interaction
models.

Lots of flexibility — see 2.3 and 2.4 of C&H. Scripts 6.1,
6.2, 6.3.

Linear Models 1 – 15

Linear models in Splus

fm ← lm(y ∼ x + a * b, data = mydata)

where mydata is a dataframe that includes the variables
x, y, and b. fm is an Splus object of class "lm".

The modelling language in Splus is object-oriented —
generic functions recognize the class of an object, and
invoke class-specific methods.
Examples of generic functions with methods for lm
objects are

• fitted(): extract fitted values.

• residuals(): extract residuals.

• coefficients() or coef(): extract coefficients.

• model.matrix(): extract the model matrix that
was built from the formula, and used to fit the model.

• summary(): produce a summary of the properties of
the fitted model.

• print(): a more succinct summary, also by simply
typing the name of the object.

• plot(): produce a plot of the object.

lm() has a number of additional arguments, such as
weights=, subset=, and more; see the (online)
documentation, and experiment.

