Multivariate Linear Regression

Mike Bowles, PhD and Patricia Hoffman, PhD

Simple Linear Regression - Least Squares

Find best linear function $f(x) = \omega_0 + \omega_1 x$

Oservations (x_i, y_i) Regression Coef ω_0 & ω_1

Residual Sum of Squares

SSE =
$$\sum_{i=1}^{N} [y_i - f(x_i)]^2 = \sum_{i=1}^{N} [y_i - \omega_1 x_i - \omega_0]^2$$

 $\frac{\partial \mathbf{E}}{\partial \omega_0} = -2 \sum_{i=1}^{N} [y_i - \omega_1 x_i - \omega_0] = 0$
 $\frac{\partial \mathbf{E}}{\partial \omega_1} = -2 \sum_{i=1}^{N} [y_i - \omega_1 x_i - \omega_0] x_i = 0$

Normal Equation

$$\frac{\partial \mathbf{E}}{\partial \omega_0} = -2\sum_{i=1}^{N} [y_i - \omega_1 x_i - \omega_0] = 0$$

$$\frac{\partial \mathbf{E}}{\partial \omega_1} = -2\sum_{i=1}^{N} [y_i - \omega_1 x_i - \omega_0] x_i = 0$$

$$\begin{bmatrix} N & \Sigma_i x_i \\ \Sigma_i x_i & \Sigma_i x_i^2 \end{bmatrix} \begin{bmatrix} \omega_0 \\ \omega_1 \end{bmatrix} = \begin{bmatrix} \Sigma_i y_i \\ \Sigma_i x_i y_i \end{bmatrix}$$

Normal Equation Solution

$$f(x) = \overline{y} + \frac{\sigma_{xy}}{\sigma_{xx}} [x - \overline{x}]$$

where

$$\sigma_{xy} = \sum_{i} (x_i - \overline{x})(y_i - \overline{y}),$$

$$\sigma_{xx} = \sum_{i} (x_i - \overline{x})^2,$$

 \overline{x} , and \overline{y} are averages.

Multivariate Linear Regression

First Matrix Notation:

Let
$$\mathbf{X} = (1 \ \mathbf{x})$$
 where
$$1 = (1,1,1,...,1)^T, \ \mathbf{x} = (x_1,x_2,...,x_N)^T,$$
 and $\mathbf{y} = (y_1,y_2,...,y_N)^T$

Multivariate Normal Equation

left-hand side matrix

$$\mathbf{X}^T\mathbf{X} =$$

$$\begin{bmatrix} \mathbf{1}^T \mathbf{1} & \mathbf{1}^T \mathbf{x} \\ \mathbf{x}^T \mathbf{1} & \mathbf{x}^T \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{N} & \Sigma_i x_i \\ \Sigma_i x_i & \Sigma_i x_i^2 \end{bmatrix}$$

Multivariate Normal Equation

right-hand side matrix

$$\begin{bmatrix} \mathbf{1} & \mathbf{x} \end{bmatrix}^T \mathbf{y} = \begin{bmatrix} \mathbf{1}^T \mathbf{y} \\ \mathbf{x}^T \mathbf{y} \end{bmatrix} = \begin{bmatrix} \Sigma_i y_i \\ \Sigma_i x_i y_i \end{bmatrix}$$

Multivariate Normal Equation

Substituting the right hand matrix and left hand matrix into the Normal Equation results in

$$\mathbf{X}^T\mathbf{X}\Omega = \mathbf{X}^T\mathbf{y}$$
 where $\Omega = (\omega_0, \omega_1)^T$

$$\Omega = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Multivariate Linear Regression

Attribute set consists of d explanatory attributes $(x_1, x_2, ..., x_d)$, \mathbf{X} becomes an $N \times d$ design matrix

$$X =$$

$$\begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1d} \\ 1 & x_{21} & x_{22} & \dots & x_{2d} \\ \dots & \dots & \dots & \dots \\ 1 & x_{N1} & x_{N2} & \dots & x_{Nd} \end{bmatrix}$$

$$\Omega = (\omega_0, \omega_1, ..., \omega_{d-1})^T$$
 is a d -dimensional vector