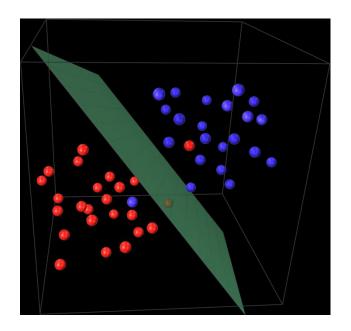
MULTICLASS SVM

Group # 2

MachineLearning@HackerDojo

Date: 11/11/2010

SUPPORT VECTOR MACHINE



Standard SVMs are typically designed only for binary classification (or 2 classes only)

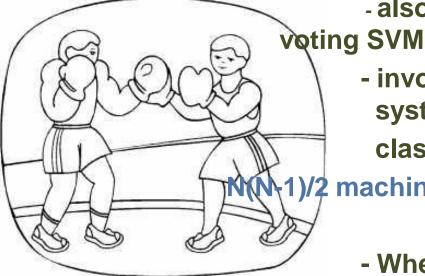
Today we will look at the different methods to effectively use it for multi-class classification.

MULTICLASS METHODS

- Based on Binary Analysis
 - requires a multiclass analysis be broken down into series of binary classifications
 - One-Against-One
 - One-Against-All
 - DAGSVM
- "All-Together" Method
 - using decomposition
 - a one-shot multiclass classification needing a single optimization operation

METHOD BASED ON BINARY ANALYSIS

One-Against-One (1A1)



- also called MWV_SVM or Max-win

- involves constructing a learning system for each pair of

classes

1)/2 machines

- When applied to a test data, each classification gives one vote to the winning class and the data is labeled with the class having most votes.

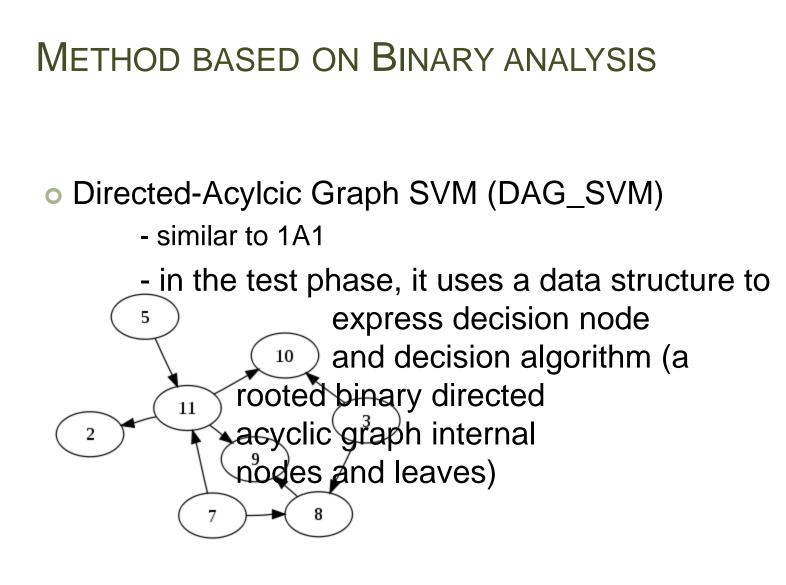
- If there are two identical votes, Max-win selects the class with the smallest index

METHOD BASED ON BINARY ANALYSIS

One-Against-All (1AA)

distinguish the data in a single class from the data in all remaining classes.

When it is time to classify a new data, the N classifiers are run, and the classifier which outputs the largest (most positive) value is chosen.



•Similar to the "One-Against-All" approach

•Mathematically one-step formula

Is one-step more efficient?

NUMERICAL EXPERIMENTS

	One-against-one		DAG		One-against-all		[25], [27]		C&S	
Problem	C	rate	C	rate		rate	C	rate	C	rate
iris	2^{4}	97.333	2^{8}	97.333	2^{12}	96.000	2^{5}	97.333	2^0	87.333
wine	2^{-2}	99.438	2^{-2}	98.315	2^2	98.876	2^{-1}	98.876	2^{-1}	99.438
glass	2^8	66.355	2^{4}	63.551	2^5	58.879	2^{9}	65.421	2^6	62.617
vowel	2^5	82.954	2^{6}	81.439	2^{11}	50.000	2^8	67.424	2^6	63.068
vehicle	2^5	80.615	2^{5}	80.851	2^{12}	78.132	2^{10}	80.142	2^4	79.669
segment	2^{12}	96.017	2^{11}	95.844	2^{12}	93.160	2^8	95.454	2^{-2}	92.165

A COMPARISON USING THE LINEAR KERNEL (BEST RATES BOLD-FACED)

WINNER!

One-Against-One

DAG-SVM

WAIT...HOW ABOUT PAIRWISE COUPLING

• From a more recent study (2005)

• Combines posterior <u>probabilities</u> from individual One-Against-One binary classifications.

 Since output of SVM is a distance measurement, output must first be transformed into posterior probabilities.

• Pairwise coupling outperforms traditional binary SVM classifiers.

Hastie and Tibshirani

all the one-versus-one

binary classifiers

to obtain estimates of the

posterior probabilities $pi = Prob(\omega i | x), i = 1, ..., M$

Kullbac-Liebler distance

$$l(p) = \sum_{i < j} n_{ij} \left(r_{ij} \log \frac{r_{ij}}{\mu_{ij}} + (1 - r_{ij}) \log \frac{1 - r_{ij}}{1 - \mu_{ij}} \right)$$

Platt's Sigmoid function

$$ext{Prob}(\omega_1 | \mathbf{x}) = rac{1}{1 + e^{Af + B}}$$

f: the output of the SVM associated with example x.

Parameters A and B: minimize the negative log-likelihood (NLL) function of the validation data.

Dataset	Training	Method							
	Set Size	WTA_SVM	MWV_SVM	PWC_PSVM	PWC_KLR				
ABE	280	$1.92{\pm}0.65$	$1.96{\pm}0.65$	$1.16{\pm}0.63$	$1.85{\pm}0.59$				
	560	$0.96{\pm}0.36$	$1.06{\pm}0.42$	$0.58{\pm}0.29$	$1.02{\pm}0.43$				
	$1,\!120$	$0.46{\pm}0.20$	$0.50{\pm}0.24$	$0.34{\pm}0.17$	$0.57{\pm}0.26$				
DNA	300	$10.15 {\pm} 1.26$	$9.87{\pm}0.90$	$9.23 {\pm} 1.73$	$9.73{\pm}0.75$				
	500	$7.84{\pm}0.79$	$7.67{\pm}0.93$	$7.41{\pm}1.14$	$7.80{\pm}0.71$				
	1,000	$5.59{\pm}0.39$	$5.72{\pm}0.57$	$5.50{\pm}0.69$	5.76 ± 0.54				
	1,000	$11.07{\pm}0.58$	$11.03 {\pm} 0.73$	$10.27{\pm}0.92$	$11.20{\pm}0.55$				
SAT	1,500	$10.08{\pm}0.49$	$10.20{\pm}0.51$	$10.05{\pm}0.60$	$10.23{\pm}0.42$				
	2,000	$9.51{\pm}0.31$	$9.61{\pm}0.39$	$9.47{\pm}0.65$	$9.66{\pm}0.37$				
	250	$9.43{\pm}0.54$	$7.97{\pm}1.23$	$6.66 {\pm} 2.24$	$7.54{\pm}1.24$				
SEG	500	$6.51{\pm}0.99$	$5.40{\pm}1.04$	$5.19{\pm}0.74$	$4.83{\pm}0.68$				
	1,000	$4.89{\pm}0.71$	$4.35{\pm}0.79$	$4.08{\pm}0.52$	$3.96{\pm}0.68$				
WAV	150	$17.21 {\pm} 1.37$	$17.75 {\pm} 1.39$	$13.20{\pm}3.70$	$15.59{\pm}1.13$				
	300	$15.43{\pm}0.97$	$15.96{\pm}0.98$	$12.97{\pm}2.02$	$14.71{\pm}0.72$				
	600	$14.09{\pm}0.55$	$14.56{\pm}0.80$	13.47 ± 1.09	$13.81{\pm}0.41$				