Bayes Theorem Example

Mike Bowles, PhD and Patricia Hoffman, PhD

Conditional Probability

(1)

$$
\begin{aligned}
\mathrm{P}(\mathrm{C} \mid \mathrm{A}) & =\frac{\mathrm{P}(\mathrm{~A}, \mathrm{C})}{\mathrm{P}(\mathrm{~A})} \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{C}) & =\frac{\mathrm{P}(\mathrm{~A}, \mathrm{C})}{\mathrm{P}(\mathrm{C})}
\end{aligned}
$$

Bayes Theorem
(3) $\quad \mathrm{P}(\mathrm{C} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \mid \mathrm{C}) \mathrm{P}(\mathrm{C})}{\mathrm{P}(\mathrm{A})}$

Let's Make a Deal

Three Doors A, B, C

- One Grand Prize Car

Contestant picks door. Monte Hall opens one of the other doors - booby prize.

Should contestant can stay with original door or switch?

Contestant picks door A, Monty opens door B; Should switch to C?

Solution: Compare probabilities
grand prize being behind door A with grand prize being behind door C
Preliminaries:
Probability (Monty opens door B$)=\mathrm{P}(\mathrm{oB})$
Probability (Car in door X) $=P(X)$
$\mathbf{P}($ Monty opens door B$)=\mathrm{P}(\mathrm{oB})$

$$
\begin{aligned}
& =\mathbf{P}(o \mathbf{B} \mid \mathbf{A}) \mathbf{P}(\mathbf{A})+\mathbf{P}(o \mathbf{B} \mid \mathbf{B}) \mathbf{P}(\mathbf{B})+\mathbf{P}(\mathrm{oB} \mid \mathbf{C}) \mathbf{P}(\mathbf{C}) \\
& =(1 / 2)(1 / 3)+(0)(1 / 3)+(1)(1 / 3) \\
& =1 / 2
\end{aligned}
$$

$\mathbf{P}($ car in $\mathbf{A} \mid$ open $\mathbf{B})=\frac{\mathbf{P}(o \mathrm{~B} \mid \mathrm{A}) \mathbf{P}(\mathbf{A})}{\mathbf{P}(\mathrm{oB})}=\frac{(1 / 2)(1 / 3)}{1 / 2}=1 / 3$
$\mathbf{P}(\operatorname{car}$ in \mathbf{C} oopen $\mathbf{B})=\frac{\mathbf{P}(\mathrm{oB} \mid \mathrm{C}) \mathbf{P}(\mathbf{C})}{\mathbf{P}(\mathrm{oB})}=\frac{(1)(1 / 3)}{1 / 2}=2 / 3$
Answer: Yes, Switch as the probability that the car is in C is greater

Simpler Way

Think of it as two choices -

Choice 1) Door A has a probability of $1 / 3$ having the car behind it. (as each of the doors are equally likely)

Choice 2) Not Door A has a probability of $2 / 3$. Monty puts the full $2 / 3$ probability on the exact door to switch over to.

2

This is the first slide.

You can typeset Emphasized text.

You can also typeset Bold, Italics, Slanted and Typewriter text. Roman fonts are not available.

Point size can be changed by making use of the tiny, scriptsize, footnotesize, small, normalsize, large, Large, LARGE, huge and Huge commands.

3 This is the second slide.

The numbered equation
(4) $\quad u_{t t}-\Delta u+u^{5}+u|u|^{p-2}=0$ in $\mathbf{R}^{3} \times[0, \infty[$.
is automatically numbered as equation 4 .

